首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater treatment biowalls may be located close to a surface water body to prevent contaminant discharge from a groundwater plume into the surface water. Groundwater contaminants passing through the biowall are treated within the biowall or immediately downgradient of the biowall. Biowalls designed and constructed for the treatment of chlorinated solvents typically contain either a solid and/or liquid source of organic carbon to promote contaminant degradation by enhanced anaerobic reductive dechlorination. Common solid organic materials in biowalls include wood mulch or similar waste plant material, and common liquid organic materials are vegetable oil (possibly emulsified) or other long‐chain fatty acids. Such biowalls then develop anaerobic conditions in the constructed biowall volume, and potentially downgradient, as dissolved oxygen originally present in the aquifer is consumed. This groundwater condition can lead to the appearance of sulfide if groundwater influent to the biowall contains moderate to high sulfate concentrations. Other researchers have presented evidence for groundwater conditions downgradient of a biowall or a permeable reactive barrier (PRB) that are altered in relation to groundwater quality, besides the desired effect of contaminant degradation or removal by precipitation. The objective of this work was to investigate with modeling the changes in downgradient groundwater species chemistry as a result of a constructed biowall. This was accomplished with a chemical species model to predict levels of sulfate and sulfide present in groundwater in close downgradient proximity to the biowall. The results indicate that downgradient chemical changes could impact a surface water body to which groundwater discharges. The model described could be enhanced by incorporating additional design variables that should be considered in biowall feasibility assessments.  相似文献   

2.
Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is utilized by microorganisms as an electron donor to transform electrophilic contaminants via reductive pathways. Over the last decade, organic mulch permeable reactive barriers (PRBs), or biowalls, have received increased interest as a relatively inexpensive slow‐release electron donor technology for addressing contaminated groundwater. To date, biowalls have been installed to enhance the passive bioremediation of groundwater contaminated with a variety of electrophilic compounds, including chlorinated solvents, explosives, and perchlorate. In addition, several mulch biowall projects are currently under way at several U.S. Department of Defense facilities. However, at the present time, the guidelines available for the design of mulch PRBs are limited to a few case studies published in the technical literature. A biowall design, construction, and operation protocol document is expected to be issued by the Air Force Center for Environmental Excellence in 2007. In this publication, three technical considerations that can have a significant impact on the design and performance of mulch PRBs are presented and discussed. These technical considerations are: (1) hydraulic characteristics of the mulch bed; (2) biochemical characteristics of different types of organic amendments used as mulch PRB fill materials; and (3) a transport model that can be used to estimate the required PRB thickness to attain cleanup standards. © 2007 Wiley Periodicals, Inc.  相似文献   

3.
A field demonstration of a mulch permeable reactive barrier (PRB), or “biowall,” as an in situ treatment technology for explosives in groundwater is summarized. Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is then available for microorganisms to use as an electron donor to transform electrophilic contaminants via reductive pathways. A 100‐foot‐long and 2‐foot‐thick mulch biowall was installed at the Pueblo Chemical Army Depot in Colorado to treat a shallow groundwater plume containing hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX). To discourage groundwater flow bypassing around and under the biowall in this highly permeable formation, a hydraulic control was installed and the PRB was keyed into the bedrock. Technology performance was monitored using a monitoring well network to establish the development and extent of the downgradient treatment zone. Performance objectives of the field demonstration were: (1) greater than 90 percent removal of RDX across the PRB and the treatment zone; (2) an RDX concentration of less than 0.55 μg/L in the treatment zone; and (3) cumulative toxic intermediate concentration (nitroso intermediates of RDX, MNX, DNX, and TNX) of less than 20 percent of the upgradient RDX concentration. All performance objectives were met within seven months after installation once the system reached a pseudo‐steady state. By this point, a sustained reducing/treatment zone had been created downgradient of the mulch PRB that showed greater than 93 percent RDX removal, RDX concentrations less than 0.55 μg/L, and no accumulation of toxic intermediates. The mulch biowall implemented during this demonstration was successful at meeting performance objectives while addressing the majority of potential concerns of the technology. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Direct aerobic biodegradation of vinyl chloride (VC) offers a remedial solution for persistent vinyl chloride plumes that are not amenable to the anaerobic process of reductive dechlorination because of either prevailing geochemical conditions or the absence of active Dehalococcoides ethenogenes. However, tools are needed to evaluate and optimize aerobic VC bioremediation. This article describes the development and testing of two techniques—a microbiological tool and a molecular tool—for this purpose. Both methods are based on detection of bacteria that can use vinyl chloride and ethene as growth substrates in the presence of oxygen. The microbiological tool is an activity assay that indicates whether bacteria capable of degrading ethene under aerobic conditions are present in a groundwater sample. This activity assay gave positive results in the area of active VC degradation of an aerobic VC bioremediation test site. A rapid semiquantitative genetic assay was also developed. This molecular tool, based on polymerase chain reaction (PCR) detection of a gene involved in the metabolism of both ethene and VC, revealed the presence of potential VC degraders in an enrichment culture and site groundwater. These tools could provide a basis for judging the potential of aerobic VC degradation by ethenotrophs at other sites in addition to offering a mechanism for treatment monitoring and system optimization. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Poly‐ and perfluoroalkyl substances (PFASs) have been identified by many regulatory agencies as contaminants of concern within the environment. In recent years, regulatory authorities have established a number of health‐based regulatory and evaluation criteria with groundwater PFAS concentrations typically being less than 50 nanograms per liter (ng/L). Subsurface studies suggest that PFAS compounds are recalcitrant and widespread in the environment. Traditionally, impacted groundwater is extracted and treated on the surface using media such as activated carbon and exchange resins. These treatment technologies are generally expensive, inefficient, and can take decades to reach treatment objectives. The application of in situ remedial technologies is common for a wide variety of contaminants of concern such as petroleum hydrocarbons and volatile organic compounds; however, for PFASs, the technology is currently emerging. This study involved the application of colloidal activated carbon at a site in Canada where the PFASs perfluorooctanoate (PFOA) and perfluorooctane sulfonic acid (PFOS) were detected in groundwater at concentrations up to 3,260 ng/L and 1,450 ng/L, respectively. The shallow silty‐sand aquifer was anaerobic with an average linear groundwater velocity of approximately 2.6 meters per day. The colloidal activated carbon was applied using direct‐push technology and PFOA and PFOS concentrations below 30 ng/L were subsequently measured in groundwater samples over an 18‐month period. With the exception of perfluoroundecanoic acid, which was detected at 20 ng/L and perfluorooctanesulfonate which was detected at 40 ng/L after 18 months, all PFASs were below their respective method detection limits in all postinjection samples. Colloidal activated carbon was successfully distributed within the target zone of the impacted aquifer with the activated carbon being measured in cores up to 5 meters from the injection point. This case study suggests that colloidal activated carbon can be successfully applied to address low to moderate concentrations of PFASs within similar shallow anaerobic aquifers.  相似文献   

6.
This article describes a design approach that has been developed for bioremediation of chlorinated volatile organic compound–impacted groundwater that is based upon experience gained during the past 17 years. The projects described in the article generally involve large‐scale enhanced anaerobic dechlorination (EAD) and combined aerobic/anaerobic bioremediation techniques. Our design approach is based on three primary objectives: (1) selecting and distributing the proper additives (including bioaugmentation) within the targeted treatment zone; (2) maintaining a neutral pH (and adding alkalinity when needed); and (3) sustaining the desired conditions for a sufficient period of time for the bioremediation process to be fully completed. This design approach can be applied to both anaerobic and aerobic bioremediation systems. Site‐specific conditions of hydraulic permeability, groundwater velocity, contaminant type and concentrations, and regulatory constraints will dictate the best remedial approach and design parameters for in situ bioremediation at each site. The biggest challenges to implementing anaerobic bioremediation processes are generally the selection and delivery of a suitable electron donor and the proper distribution of the donor throughout the targeted treatment zone. For aerobic bioremediation processes, complete distribution of adequate concentrations of a suitable electron acceptor, typically oxygen or oxygen‐yielding compounds such as hydrogen peroxide, is critical. These design approaches were developed based on understanding the biological processes involved and the mechanics of groundwater flow. They have evolved based on actual applications and results from numerous sites. An EAD treatment system, based on our current design approach, typically uses alcohol as a substrate, employs groundwater recirculation to distribute additives, and has an operational period of two to four years. An aerobic in situ treatment system based on our current design approach typically uses pure oxygen or hydrogen peroxide as an electron acceptor, may involve enhancements to groundwater flow for better distribution, and generally has an operational period of one to four years. These design concepts and specific project examples are presented for 17 sites. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A new approach to the maintenance of large microbial populations for bioremediation purposes has been developed in which a centrifugal bioreactor is used to immobilize microbial populations at extremely high density. The cells are ordered into a three‐dimensional array through which wastewater or groundwater volumes may be flowed, unimpeded by frits or screens. The process methodology is independent of the type, shape, or viability of the individual cells immobilized and, thus, may be adapted to many different bioremediation needs. The utilization of this new process has been explored for three different types of remediation: the removal of heavy metals from wastewater, the aerobic degradation of methyl‐tert‐butyl ether (MTBE), and the anaerobic reduction of nitrate to nitrogen gas. This article discusses the use of centrifugal bioreactors and their application in remediation. © 2001 John Wiley & Sons, Inc.  相似文献   

8.
Given ambient atmospheric oxygen concentrations of about 21 percent (by volume), the lower limit for reliable quantitation of dissolved oxygen concentrations in groundwater samples is in the range of 0.1–0.5 mg/L. Frameworks for assessing in situ redox condition are often applied using a simple two‐category (oxic/anoxic) model of oxygen condition. The “oxic” category defines the environmental range in which dissolved oxygen concentrations are clearly expected to impact contaminant biodegradation, either by supporting aerobic biodegradation of electron‐donor contaminants like petroleum hydrocarbons or by inhibiting anaerobic biodegradation of electron‐acceptor contaminants like chloroethenes. The tendency to label the second category “anoxic” leads to an invalid assumption that oxygen is insignificant when, in fact, the dissolved oxygen concentration is less than detection but otherwise unknown. Expressing dissolved oxygen concentrations as numbers of molecules per volume, dissolved oxygen concentrations that fall below the 0.1 mg/L field detection limit range from 1 to 1017 molecules/L. In light of recent demonstrations of substantial oxygen‐linked biodegradation of chloroethene contaminants at dissolved oxygen concentrations well below the 0.1–0.5 mg/L field detection limit, characterizing “less than detection” oxygen concentrations as “insignificant” is invalid. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Chlorinated solvents such as tetrachloroethene (perchloroethene, PCE) and trichloroethene (TCE) have been extensively used in various industrial applications for many years. Because neither are typically consumed through their various uses, they are often released to the environment through industrial application or disposal. Once released, PCE and TCE tend to migrate downward into groundwater, where they persist. In the current case study, cheese whey was used as a groundwater amendment to facilitate the reductive dechlorination of a chlorinated solvent plume underlying an auto dealer/repair shop in Harris County, Texas. From September 2010 to January 2014, over 32,000 gallons of cheese whey were injected into the subsurface resulting in a marked reduction in oxidation–reduction potential (ORP) and nitrate concentrations, coupled with an increase in ferrous iron concentrations. Statistical trend analyses indicate the primary contaminants, PCE and TCE, as well as the daughter product cis‐1,2‐dichloroethene (cDCE), all exhibited a positive response, as evidenced by statistically decreasing trends, and/or reversal in concentration trends, subsequent to cheese whey injections. Maximum concentrations of PCE and TCE in key test wells decreased by as much as 98.97 percent and 99.17 percent, respectively. In addition, the bacterial genus Dehalococcoides, capable of complete reduction of PCE to non‐toxic ethene, was found to be more abundant in the treatment area, as compared to background concentrations. Because cheese whey is a by‐product of the cheese making process, the cost of the product is essentially limited to transport. This study demonstrates cheese whey to be an effective groundwater amendment at a cost which is orders of magnitude lower than popular industry alternatives.  相似文献   

10.
Introduction and large-scale production of synthetic halogenated organic chemicals over the last fifty years has resulted in a group of contaminants that tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contaminants, along with their toxicity and tendency to accumulate in food chains, make them particularly relevant targets for remediation activities. Among the mechanisms that result in dehalogenation of some classes of organic contaminants are stimulation of metabolic sequences through introduction of electron donor and acceptor combinations; addition of nutrients to meet the needs of dehalogenating microorganisms; possible use of engineered microorganisms; and use of enzyme systems capable of catalyzing reductive dehalogenation. The current state of research and development in the area of reductive dehalogenation is discussed along with possible technological application of relevant processes and mechanisms to remediation of soil and groundwater contaminated with chlorinated organics. In addition, an overview of research needs is suggested, which might be of interest for development of in-situ systems to reduce the mass of halogenated organic contaminants in soil and groundwater.  相似文献   

11.
A former chlorofluorocarbon manufacturing facility in northern New Jersey was purchased for redevelopment as a warehousing/distribution center as part of the New Jersey Department of Environmental Protection's Brownfields redevelopment initiative. Soil and groundwater at the site were impacted with dense nonaqueous‐phase liquids (chlorinated organic compounds) and light nonaqueous‐phase liquids (petroleum hydrocarbons). The initial remedial strategy (excavation and offsite disposal) developed by prior site owners would have been cost‐prohibitive to the new site owners and made redevelopment infeasible. Mixed remedial technologies were employed to reduce the cost of remediation while meeting regulatory contaminant levels that are protective of human health and the environment. The most heavily impacted soils (containing greater than 95 percent of the contaminant mass) were excavated and treated onsite by the addition of calcium oxide and lime kiln dust coupled with physical mixing. Treated soils were reused onsite as part of the redevelopment. Residual soil and groundwater contamination was treated via in situ injections of emulsified oil to enhance anaerobic biodegradation, and emulsified oil/zero‐valent iron to chemically reduce residual contaminants. Engineering (cap) and administrative (deed restriction) controls were used as part of the final remedy. The remedial strategy presented in this article resulted in a cost reduction of 50 percent of the initial remedial cost estimate. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
Remediation of a large separate‐phase hydrocarbon product and associated dissolved‐phase gasoline plume was accelerated by coupling multiphase extraction with in situ microbial stimulation. At the beginning of remediation activities, the separate‐phase hydrocarbon plume extended an estimated seven acres with product thickness measuring up to 2.1 feet thick. Within 18 months after beginning extraction, reduction of gasoline constituents in groundwater became asymptotic and measureable product disappeared from the upgradient source area. At that time, the remediation team initiated a program of limited in situ anaerobic bioremediation with the goal of stimulating production of natural surfactants from native microbes to release petroleum from the soil matrix. Groundwater concentrations of gasoline constituents increased gradually over the next three years, improving recovery without biofouling the pump‐and‐treat infrastructure. Using this approach, the groundwater component of the remedy was completed in less than five years, substantially less than the 10 years to 15 years predicted by modeling. This strategy demonstrated a more sustainable approach to remediation, reducing electrical usage by an estimated 800 megawatt hours, reducing infrastructure requirements, and preserving an estimated 150 million gallons of groundwater for this arid agricultural area. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
During the past decade, various promising technologies have been developed for the decontamination of groundwater insitu which do not require long-term pumping or high energy consumption. One approach is to use funnel and gate technology. In the case described here, the combination of adsorption of contaminants on granular activated carbon (GAC) and its biodegradation is applied to considerably extend the operating time of the filling material in the barrier system. Monochlorobenzene (MCB), a recalcitrant groundwater contaminant under anaerobic conditions, undergoes high-capacity adsorption on GAC up to about 450 mg per gram. Aerobic enrichment cultures, obtained from a contaminated aquifer, were able to mineralize initially adsorbed MCB. In respirometer experiments the rate of carbon dioxide formation was dependent on the equilibrium concentration of MCB. The oxygen consumption of activated carbon by means of autoxidative reactions may delay aerobic biodegradation in GAC filters. The oxygen uptake of pristine activated carbon amounted to 5.6 mg per gram GAC in laboratory column experiments. When GAC was pre-loaded with MCB, autoxidation rates were considerably reduced. Hence, it is advisable not to stimulate the biodegradation of MCB by oxygen supply in GAC biobarriers until after an initial period of solely sorptive MCB removal from the groundwater flow.  相似文献   

14.
Permeable biobarrier systems (PBSs) are being recognized as low‐cost passive bioremediation technologies for chlorinated organic contamination. This innovative technology can play a crucial and effective role in site restorations. Laboratory‐scale experiments were conducted to investigate the biodegradation of trichloroethylene (TCE) to ethylene in shallow groundwater through the use of a PBS enhanced by bioaugmentation at the U.S. Department of Energy's Savannah River Site (SRS). Two composts and two plant amendments, eucalyptus mulch (EM) and corncobs (CC), were examined for their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. These materials were evaluated for their (1) nutrient and organic carbon content, (2) TCE sorption characteristics, and (3) longevity of release of nutrients and soluble carbon in groundwater to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to dichloroethenes (DCEs); however, the inoculation with the TCE‐degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by‐product concentration, mostly in the form of DCEs and vinyl chloride (VC) followed by a slow degradation to ethylene. Of the tested amendments, eucalyptus mulch was the most effective at supporting the reductive dechlorination of TCE. Corncobs created a very acidic condition in the column that inhibited dechlorination. © 2007 Wiley Periodicals, Inc.  相似文献   

15.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

16.
Established groundwater contaminants such as chlorinated solvents and hydrocarbons have impacted groundwater at hundreds of thousands of sites around the United States and have been responsible for multibillion dollar remediation expenditures. An important question is whether groundwater remediation for the emerging contaminant class comprised of per‐ and polyfluoroalkyl substances (PFAS) will be a smaller, similar, or a larger‐scale problem than the established groundwater contaminants. A two‐pronged approach was used to evaluate this question in this paper. First, nine quantitative scale‐of‐remediation metrics were used to compare PFAS to four established contaminants: chlorinated solvents, benzene, 1,4‐dioxane, and methyl tert‐butyl ether. These metrics reflected the prevalence of the contaminants in the U.S., attenuation potential, remediation difficulty, and research intensity. Second, several key challenges identified with PFAS remediation were evaluated to see similar situations (qualitative analogs) that have been addressed by the remediation field in the past. The results of the analysis show that four out of nine of the evaluated quantitative metrics (production, number of potential sites, detection frequency, required destruction/removal efficiency) indicate that the scale of PFAS groundwater remediation may be smaller compared to the current scale of remediation for conventional groundwater contaminants. One attenuation metric, median plume length, suggests that overall PFAS remediation could pose a greater challenge compared to hydrocarbon sites, but only slightly larger than chlorinated volatile organic compounds sites. The second attenuation metric, hydrophobic sorption, was not definitive regarding the potential scale of PFAS remediation. The final three metrics (regulatory criteria, in‐situ remediation capability, and research intensity) all indicate that PFAS remediation might end up being a larger scale problem than the established contaminants. An assessment of the evolution of groundwater remediation capabilities for established contaminants identified five qualitative analogs for key PFAS groundwater remediation issues: (a) low‐level detection analytical capabilities; (b) methods to assess the risk of complex chemical mixtures; (c) nonaqueous phase dissolution as an analog for partitioning, precursors, and back diffusion at PFAS sites; (d) predictions of long plume lengths for emerging contaminants; and (e) monitored natural attenuation protocols for other non‐degrading groundwater contaminants. Overall the evaluation of these five analogs provided some comfort that, while remediating the potential universe of PFAS sites will be extremely challenging, the groundwater community has relevant past experience that may prove useful. The quantitative metrics and the qualitative analogs suggest a different combination of remediation approaches may be needed to deal with PFAS sites and may include source control, natural attenuation, in‐situ sequestration, containment, and point‐of‐use treatment. However, as with many chlorinated solvent sites, while complete restoration of PFAS sites may be uncommon, it should be possible to prevent excessive exposure of PFAS to human and ecological receptors.  相似文献   

17.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

18.
Directionally drilled horizontal wells offer the opportunity for significant cost savings and technical advantages over alternative trenched well and vertical well soil and groundwater remediation systems in many cases. The magnitude of the cost savings is a function of the remediation technology deployed and the values placed on the reduction of site impacts, dramatic reduction in the time required to achieve site remediation goals and requirements, the ability of horizontal well remediation to easily treat normally recalcitrant contaminants such as MTBE, and the ability to drill under paved areas, operating plants, residential areas, landfills, lagoons, waterways, ponds, basins, and other areas that are normally difficult or impossible to access with conventional drilling or trenching methods. In addition to improvements in site access capabilities, horizontal wells have been found capable of addressing contaminants that vertical wells do not readily treat, even with the same remediation technology deployed, especially if air‐based remediation technologies are deployed. With biosparging, for example, greater treatment capabilities of horizontal wells over vertical wells are attributed to greater oxygen flux over a broader area, a larger treatment zone, and extremely prolonged residence of groundwater contaminants in the aerobic treatment area, typically months or years. This article describes the use of directionally drilled horizontal wells for application of a variety of treatment technologies and includes costs of various options with a detailed comparison of biosparging options. © 2002 Wiley Periodicals, Inc.  相似文献   

19.
A major challenge for in situ treatment is rebound. Rebound is the return of contaminant concentrations to near original levels following treatment, and frequently occurs because much of the residual nonaqueous phase liquid (NAPL) trapped within the soil capillaries or rock fractures remains unreachable by conventional in situ treatment. Fine‐textured strata have an especially strong capacity to absorb and retain contaminants. Through matrix diffusion, the contaminants dissolve back into groundwater and return with concentrations that can approach pretreatment levels. The residual NAPL then serves as a continuing source of contamination that may persist for decades or longer. A 0.73‐acre (0.3‐hectare) site in New York City housed a manufacturer of roofing materials for approximately 60 years. Coal tar served as waterproofing material in the manufacturing process and releases left behind residual NAPL in soils. An estimated 47,000 pounds (21,360 kg) of residual coal tar NAPL contaminated soils and groundwater. The soils contained strata composed of sands, silty sands, and silty clay. A single treatment using the RemMetrik® process and Pressure Pulse Technology® (PPT) targeted the contaminant mass and delivered alkaline‐activated sodium persulfate to the NAPL at the pore‐scale level via in situ treatment. Posttreatment soil sampling demonstrated contaminant mass reductions over 90 percent. Reductions in posttreatment median groundwater concentrations ranged from 49 percent for toluene to 92 percent for xylenes. Benzene decreased by 87 percent, ethylbenzene by 90 percent, naphthalene by 80 percent, and total BTEX by 91 percent. Mass flux analysis three years following treatment shows sustained reductions in BTEX and naphthalene, and no rebound. ©2015 Wiley Periodicals, Inc.  相似文献   

20.
The chlorinated solvent stabilizer 1,4‐dioxane (DX) has become an unexpected and recalcitrant groundwater contaminant at many sites across the United States. Chemical characteristics of DX, such as miscibility and low sorption potential, enable it to migrate at least as far as the chlorinated solvent from which it often originates. This mobility and recalcitrance has challenged remediation professionals to redesign existing treatment systems and monitoring networks to accommodate widespread contamination. Furthermore, remediation technologies commonly applied to chlorinated solvent co‐contaminants, such as extraction and air stripping or in situ enhanced reductive dechlorination, are relatively ineffective on DX removal. These difficulties in treatment have required the industry to identify, develop, and demonstrate new and innovative technologies and approaches for both ex situ and in situ treatment of this emerging contaminant. Great strides have been made over the past decade in the development and testing of remediation technologies for removal or destruction of DX in groundwater. This article briefly summarizes the fate and transport characteristics of DX that make it difficult to treat, and presents technologies that have been demonstrated to be applicable to groundwater treatment at the field scale.  ©2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号