首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
研究通过单因素分析和正交实验法确定新型微电解填料-Fenton联用预处理硝基苯废水的最佳操作条件。结果表明,新型微电解填料降解硝基苯的影响因素从大到小依次为固液比>进水p H值>气水比>HRT,在微电解最佳条件:HRT为60 min,固液比为0.6,进水p H值为2,气水比为15∶1;Fenton试剂最佳条件:反应时间为20 min、p H值为4.5、m(H2O2):m(COD)为2.5、n(H2O2)∶n(Fe2+)为6,硝基苯和COD总去除率可分别达到97.6%和68.3%。处理后的废水可生化性提高,为后续的生物处理创造了良好的条件。  相似文献   

2.
针对邻苯二甲酸二甲酯(DMP)难降解的特性,采用高铁酸盐-光催化的协同工艺降解水中的DMP;研究了不同参数对DMP降解效能的影响;探讨了光催化降解DMP的机理。结果表明,Fe(Ⅵ)-TiO_2-UV体系对DMP的降解率明显优于其他2种体系(高铁酸盐体系和TiO_2-UV降解体系),说明光催化与高铁酸盐的组合产生明显的协同效应;当DMP初始浓度为5 mg·L~(-1)、pH=9、高铁酸盐和二氧化钛投加浓度分别为31.7 mg·L~(-1)和40mg·L~(-1)时,DMP降解率较高(75%);在Fe(Ⅵ)-TiO_2-UV体系光降解DMP过程中,TiO_2催化剂表面产生的Fe—O—(有机)络合物会抑制DMP降解,用1%HCl溶液洗涤TiO_2,可恢复其活性;用Fe(VI)-TiO_2-UV体系降解实际生产废水和模拟废水中DMP,DMP降解率分别为67%和78.2%。高铁酸盐-光催化联合工艺的协同作用极大地提高了DMP的降解率。  相似文献   

3.
铁碳微电解/H_2O_2耦合类Fenton法深度处理制药废水   总被引:3,自引:0,他引:3  
采用铁碳微电解/H2O2耦合类Fenton法深度处理制药废水,考察不同铁碳比、H2O2投加量、溶液p H及反应时间对COD去除效果的影响,通过单因素实验和正交实验确定最优条件并与铁碳微电解法的去除效果进行对比。结果表明,各因素对COD的去除效果均呈现先增加后降低或趋于稳定的趋势,且对去除效果的影响顺序为:Fe/CH2O2投加量溶液p H反应时间;在固液比为1∶10的条件下,Fe/C(质量比)为1∶1,溶液p H为2.5,反应时间为60 min,H2O2(30%)投加量为12.24 mmol/L时对COD的去除效率最高,可达71.56%;H2O2对铁碳微电解法有显著的加强作用。  相似文献   

4.
杂多酸水溶液脱除烟气中SO2的性能研究   总被引:1,自引:0,他引:1  
合成了H3PMo12O40、H4SiW12O40、H3PW12O40、H4PMo11VO40、H5PMo10V2O40和H6PMo9V3O406种杂多酸,分别采用红外光谱(FT-IR)和X射线衍射(XRD)表征杂多酸的结构,并采用气相色谱仪对6种杂多酸水溶液进行脱硫实验测试.实验结果表明:制备的6种杂多酸具有良好的Ke...  相似文献   

5.
研究了超声波(ultrasonic)和紫外线(ultraviolet)-Fenton反应联用处理干旱区老化石油污染土壤。土壤TPH含量为30 470 mg/kg,pH值为3,H2O2与Fe比例为50∶1时,H2O2浓度为0.37%、0.74%、1.11%和1.85%在超声波处理6 h土壤TPH去除量分别为4 495、11 983、15 470和19 800 mg/kg;TPH去除量随H2O2/Fe2+增大而增大,H2O2/Fe2+为100∶1时,TPH去除量为12 699 mg/kg。溶液pH值接近中性,H2O2浓度为0.74%,H2O2/Fe2+为50∶1,超声波与UV共同作用2 h和4 h,TPH去除量分别达到14 824和21 821 mg/kg;UV单独作用2 h、4 h对土壤TPH去除量为9 253和12 845 mg/kg。超声波-Fenton反应对1,2-二甲苯降解效果最好,其次为C17-C28的直链及支链烷烃,最低为烃类衍生物。  相似文献   

6.
O3/ H2O2法对生化出水中不同种类有机物的去除效果研究   总被引:1,自引:0,他引:1  
采用XAD-8/XAD-4吸附树脂联用技术将城市污水生化出水中有机物分为疏水酸、非酸疏水物质、弱疏水物质及亲水物质4类有机物,研究了O3/H2O2法对这4类有机物的去除效果.结果表明:(1)O3/H2O2法对生化出水中有机物的去除效果明显好于O3法、H2O2法.反应60 min时,O3/H2O2法对溶解有机碳(DOC)和254 nm波长处的单位比色皿光程下的紫外吸光度(UV254)的去除率分别达到49%和82%.(2)生化出水经O3/H2O2处理后,一部分疏水性有机物(疏水酸和非酸疏水物质)在反应过程中转化为亲水性有机物(弱疏水物质和亲水物质).(3)生化出水中71%的三卤甲烷生成势(THMFP)由疏水酸和亲水物质产生,特别是疏水酸,其产生的THMFP占总量的48%.反应60 min时,O3/H2O2法对疏水酸、非酸疏水物质、弱疏水物质和亲水物质产生的THMFP的去除率分别为64%、100%、88%和18%.  相似文献   

7.
以醋酸锌(Zn(CH3COO)2)和六水合硝酸铕(Eu(NO3)3·6H2O)为主要原料,氢氧化钠(Na OH)为沉淀剂,聚乙二醇(PEG2000)为矿化剂,柠檬酸为p H调节剂,采用水热法制备Eu掺杂Zn O复合纳米棒光催化材料粉体。用制备的粉体对制药废水进行光催化降解实验,并研究了反应温度、反应时间、光照条件和掺杂比对其光催化氧化效果的影响。用XRD、TEM和EDS等测试手段对粉体进行了表征。研究结果表明,水热反应温度为160℃,时间为6 h,制备的3%Eu掺杂Zn O复合纳米棒光催化材料的光催化效果较好,在365 nm的紫外灯照射下150 min后,制药废水的脱色率达38.8%,COD的降解率达57.5%。  相似文献   

8.
为了探究协同老化后的微塑料与有机污染物的相互作用机制,以PVC作为研究对象,采用TiO2/UV/O3协同老化方式,对比考察了老化前后PVC对甲基橙(MO)的吸附性能。结果表明,随着老化的进行,PVC颗粒表面碎片化加深,粒径明显减小,Zeta电位值降低,并出现了新的含氧官能团。原始PVC对MO的吸附符合准一级动力学模型,而老化后的PVC对MO的吸附符合准二级动力学模型,且主要的吸附模式均为液膜扩散和颗粒内扩散。动力学拟合结果表明老化前的PVC对MO的吸附以物理吸附为主,而老化后的PVC对MO的吸附以化学吸附为主。老化前后的PVC对MO的吸附均符合Freundlich等温吸附模型,表明MO与微塑料之间的相互作用是在非均匀表面上的多层吸附。以上研究结果可为微塑料携带有机污染物在环境中的迁移转化的行为提供参考。  相似文献   

9.
铁炭微电解-H2O2法降解二甲基甲酰胺废水   总被引:2,自引:0,他引:2  
采用铁炭微电解-H2O2法降解二甲基甲酰胺(DMF)废水,探讨了反应时间、pH、铁炭质量比(简写为Fe/C)以及H2O2投加量对DMF去除率的影响.结果表明:(1)当反应时间为60 min、pH为3、Fe/C为3:1时,DMF去除率为73.4%.(2)向反应体系中投加H2O2,DMF去除率明显提高.当H2O2投放量为0.20 mL/L时,DMF去除率达到95.2%.  相似文献   

10.
为提高微塑料检测的准确性,以10种不同材质的微塑料作为研究对象,使用7种常用的消解液,通过室内实验的方法对消解前后微塑料的质量、荧光强度、表面形态等进行了研究。结果表明:在7种不同的消解方法中,经H_2O_2(30%,25℃)消解后,微塑料质量减少了2%~5%,消解后微塑料表面荧光强度略有减弱,表面形态和元素组成变化轻微;在FT-IR红外图谱中,微塑料颗粒的特征峰仍存在,对于微塑料识别无显著影响;而其他6种消解方法均在不同程度上降低了微塑料的质量,并对微塑料表面造成了划痕、深裂缝和鳞状裂片等破坏。以上结果可为环境中微塑料的检测和定量分析提供参考。  相似文献   

11.
Degradation of aquatic humic material by ultraviolet light   总被引:1,自引:0,他引:1  
Peter Backlund 《Chemosphere》1992,25(12):1869-1878
Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide (UV/H2O2. The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined.

The DOC content and the UV-abs. of the water decreased substantially during treatment with UV/H2O2. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and UV/H2O2-treated waters, respectively. No mutagenic activity was generated by the UV irradiation or the UV/H2O2 treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.  相似文献   


12.
UV/Fenton, near-UV-visible/Fenton, dark Fenton, and H2O2/UV reactions have been used to treat simulated dyehouse effluents representing wastewater from the textile dyeing and rinsing process. Experiments were carried out in a lab - scale photochemical reactor using concentrations of 0.5–25 mM H2O2, 0.04-0.5 mM Fe2+-ion and different dilutions of textile wastewater. To assess the extent of mineralization, decolourization kinetics and the effect of different fight sources on treatment efficiency, DOC, optical density at 254 nm and 600 nm wavelength and residual H2O2 concentrations were measured during the course of the advanced oxidation reactions. Comparative evaluation of the obtained results revealed that the decolourization rate increased with applied H2O2 and Fe2+-ion dose as well as the strength of the synthetic textile wastewater. The best results were obtained by the near - UV/visible/Fenton process with a decolourization rate constant of 1.57 min−1, a UV254nm reduction of 97% and a DOC removal of 41% at relatively low doses of the H2O2 oxidant and Fe2+-ion catalyst within 60 min treatment time.  相似文献   

13.
Xu Y 《Chemosphere》2001,43(8):1103-1107
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

14.
In this study, the rates of degradation of organic compounds by several AOPs (H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV, Fe(II)/H2O2 and Fe(III)/H2O2) have been compared. Experiments were carried out at pH ≈ 3 (perchloric acid / sodium perchlorate solutions) and with UV reactors equipped with a low-pressure mercury vapour lamp (emission at 253.7 run). The data obtained with atrazine ([Atrazine]o = 100 μg/L) showed that the rate of degradation of atrazine in very dilute aqueous solution is much more rapid with Fe(III)/UV than with H2O2/UV. Photo-Fenton process (Fe(III)/H2O2/UV) was found to be more efficient than H2O2/UV and Fe(II)/H2O2 for the mineralization of acetone ([Acetone]o = 1 mM).  相似文献   

15.
UV/TiO2/H2O2, UV/TiO2 and UV/H2O2 were compared as pre-treatment processes for the detoxification of mixtures of 4-chlorophenol (4CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) prior to their biological treatment. When each chlorophenol was initially supplied at 50 mg l−1, UV/TiO2/H2O2 treatment supported the highest pollutant removal, COD removal, and dechlorination efficiencies followed by UV/TiO2 and UV/H2O2. The remaining toxicity to Lipedium sativum was similar after all pre-treatments. Chlorophenol photodegradation was always well described by a first order model kinetic (r2 > 0.94) and the shortest 4CP, DCP, TCP and PCP half-lives of 8.7, 7.1, 4.5 and 3.3 h, respectively, were achieved during UV/TiO2/H2O2 treatment. No pollutant removal was observed in the controls conducted with H2O2 or TiO2 only. Inoculation of all the photochemically pre-treated mixtures with activated sludge microflora was followed by complete removal of the remaining pollutants. Combined UV/TiO2/H2O2-biological supported the highest detoxification, dechlorination (99%) and COD removal (88%) efficiencies. Similar results were achieved when each chlorophenol was supplied at 100 mg l−1. COD and Cl mass balances indicated UV, UV/H2O2, and UV/TiO2 treatments lead to the formation of recalcitrant photoproducts, some of which were chlorinated.  相似文献   

16.
Fenton''s type reaction and chemical pretreatment of PCBs   总被引:3,自引:0,他引:3  
This study evaluates the effects of Fenton's reagent (FR) on the rate and extent of the oxidative degradation of individual mono, di-, tri- and tetrachlorobiphenyls in the commercial mixture DELOR 103, equivalent to AROCLOR 1248. The oxidation effect of FR strongly increased with increasing the molar ratio of Fe2+/H2O2. The most effective oxidation of DELOR 103 (10 μg.ml−1) was achieved in a solution containing 1M H2O2 and 1 mM Fe2+. The FR elimination rate constants of PCB congeners decrease with increasing number of chlorine substituents in the biphenyl molecule and show a good correlation with the values of molecular weights of the PCB congeners and their 1-octanol/water partition coefficients.  相似文献   

17.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   

18.
针对企业硝基氯苯装置产生的高毒性、难降解的硝基苯类废水,开发出全混态零价铁-芬顿组合预处理工艺,并分别优化了零价铁还原和芬顿氧化的工艺条件。结果表明,pH为2.0、零价铁投加量为220 mg/L时,废水中硝基苯类物质的去除率可达98.5%以上。出水pH约为3.0,继续投加3000 mg/L的H2O2,Fe2+投加比按C(Fe2+,mg/L):C(H2O2,mg/L)=1:10,1 h内COD去除率可达90%以上,且B/C由0.08提高到0.45。可见该组合预处理工艺可大幅削减废水毒性、改善可生化性,且直接运行成本仅为26.28元/吨,具有良好的环境和经济效益。  相似文献   

19.
Follut F  Vel Leitner NK 《Chemosphere》2007,66(11):2114-2119
Aqueous 4-nitrophenol solutions containing TiO2 or Al2O3 nanoparticles were irradiated with electron beam. 4-nitrophenol was decomposed by the ionizing radiation process in the absence of the nanoparticles. The addition of TiO2 or Al2O3 (2 g l−1) before irradiation improved the removal of 4-nitrophenol, total organic carbon (TOC) but also nitrogen (TN). To identify the origin of the loss (catalysis or simply adsorption), TiO2 or Al2O3 nanoparticles were added after irradiation. Experiments show that the effect of the presence of TiO2 or Al2O3 during irradiation is just due to adsorption.  相似文献   

20.

Microplastics pollution is becoming a major environmental issue, and exposure to microplastics has been associated with numerous adverse results to both the ecological system and humans. This work summarized the state-of-the-art developments in the breakdown of microplastics, including natural weathering, catalysts-assisted breakdown and biodegradation. Characterization techniques for microplastic breakdown involve scanning electron microscopy, Fourier infrared spectroscopy, X-ray photoelectron spectroscopy, etc. Bioavailability and adsorption capacity of microplastics may change after they are broken down, therefore leading to variety in microplastics toxicity. Further prospectives for should be focused on the determination and toxicity evaluation of microplastics breakdown products, as well as unraveling uncultivable microplastics degraders via cultivation-independent approaches. This work benefits researchers interested in environmental studies, particularly the removal of microplastics from environmental matrix.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号