首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The objective of this study was to investigate the feasibility of using a microbial biopolymer produced by Acetobacter xylinum as a carbon source for heterotrophic biological denitrification. The denitrification rate, COD availability and nitrite concentration were response parameters. Under the experimental conditions, a denitrification rate of about 0.74 kg NO3 N/m3d at 6 h retention time was achieved with microbial cellulose (MC). The reactor effluent contained significantly COD concentrations (20–86 mg/L) so it was not carbon limited, and was receiving enough carbon to facilitate the denitrification process. The maximum nitrite concentration in the effluent was found to be 0.4 mg/L. However, decreasing the retention time to 3 h significantly reduced the efficiency. It can be concluded that the MC is a suitable carbon source for nitrate removal in a heterotrophic biological denitrification process.  相似文献   

2.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   

3.
A combined process comprised of ex-situ nitrification in an aged refuse bioreactor (designated as A bioreactor) and in-situ denitrification in a fresh refuse bioreactor (designated as F bioreactor) was constructed for investigating N2O emission during the stabilization of municipal solid waste (MSW). The results showed that N2O concentration in the F bioreactor varied from undetectable to about 130 ppm, while it was much higher in the A bioreactor with the concentration varying from undetectable to about 900 ppm. The greatly differences of continuous monitoring of N2O emission after leachate cross recirculation in each period were primarily attributed to the stabilization degree of MSW. Moreover, the variation of N2O concentration was closely related to the leachate quality in both bioreactors and it was mainly affected by the COD and COD/TN ratio of leachate from the F bioreactor, as well as the DO, ORP, and NO3?-N of leachate from the A bioreactor.  相似文献   

4.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO? 3), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO? 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO? 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment ‘nitrate leaching zones’ is proposed, whereby most stream NO? 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO? 3 concentrations.  相似文献   

5.
The process-based INCA model was applied to Dalelva Brook (3.2 km2) and the Bjerkreim River (685 km2) including several subcatchments, in order to test the model's ability to simulate streamwater nitrate (NO3 -) dynamics and output fluxes under highly contrasting climatic conditions and nitrogen (N) loading. The simulated runoff volumes and mean NO3 - concentrations at Dalelva and Bjerkreimwere within +2 to +10% of the measured average during 1993–1995 (–19 to +31% within individual years). INCA to a great extent also reproduced the observed streamwater flow dynamics at both study sites (coefficient of determination, r 2 > 0.70). Temporal variation of streamwater NO3 - during 1993–1995 was captured quite well by the model, especially at small catchments with a distinct seasonal NO3 - pattern (r 2 = 0.46–0.68). At the Bjerkreim River outlet, the relationship were somewhat weaker (r 2 = 0.26, p < 0.01). Despite a few situations where the model failed to capturethe streamwater NO3 - dynamics, INCA proved to be a quite robust tool for simulating NO3 - dynamics and output fluxes in the two study catchments.  相似文献   

6.
This article addresses the removal of methyl tertiary‐butyl ether (MTBE) from water, using Fenton's Reagent. Although complete mineralization of MTBE by Fenton's Reagent was not achieved, greater than 99 percent destruction of MTBE was realized. This was accomplished at a Fe+2:H2O2 ratio of 1:1 and 1 hour of contact time. In all tests, twice the stoichiometric ratio of H2O2 to MTBE was used. The major by‐products were tertiary‐butyl alcohol, tertiary‐butyl formate, and acetone with traces of 2‐methyl‐1‐propene (isobutylene). While small quantities of O2 evolved, no significant quantity of CO2 gas was detected.  相似文献   

7.
Nitrous oxide (N2O) release and denitrification rates were investigated from the intertidal saltmarsh and mudflats of two European river estuaries, the Couesnon in Normandy, France and the Torridge in Devon, UK. Sediment cores and water were collected from each study site and incubated for 72 h in tidal simulation chambers. Gas samples were collected at 6 and 12 h intervals from the chambers during incubation. From these N2O emission rates were calculated. The greatest rates for both N2O production and denitrification were measured from saltmarsh cores. These were 1032 μmol N2O m?2 day?1 and 2518 μmol N2 m?2 day?1, respectively, from the Couesnon and 109 μmol N2O m?2 day?1 and 303 μmol N2 m?2 day?1 from the Torridge. A strong positive correlation was apparent with N2O emission rates and ammonium concentration in the sediment, nitrate concentration in floodwater and sediment aerobicity.  相似文献   

8.
The overall objective of this research was to develop a reliable, robust, and maintenance-free passive system for biological denitrification in on-site wastewater treatment systems. The process relies on sulfur oxidizing denitrifying bacteria in upflow packed bioreactors. Since this process consumes alkalinity, it is necessary to add a solid-phase buffer that can scavenge the H+ as it is generated by the biologically-mediated reaction and arrest the drop in the pH value. This study investigated the use of limestone, marble chips and crushed oyster shell as solid-phase buffers that provide alkalinity. Two bench-scale upflow column reactors and two field-scale bioreactors were constructed and packed with sulfur pellets and an alkalinity source. The pilot scale bioreactors (∼200 L each) were installed at the Massachusetts Alternative Septic System Test Center (MASSTC) in Sandwich, MA. The pilot-scale bioreactors performed better when oyster shell was used as the solid-phase buffer vis-à-vis marble chips. In both (pilot-scale and laboratory-scale) systems, denitrification rates were high with the effluent NO3 —N concentration consistently below 8 mg/L.  相似文献   

9.
The impact of nitrogen fertilizers on gaseous emissions duringwinter and spring-thaw is not well understood and was the objective of this research. Using a micrometeorological method,N2O, NO and NOx fluxes from ryegrass were measured from November 1997 to March 1998. Three different mineralfertilizers were applied in November: urea (U), slow-release urea(SRU) and ammonium nitrate (AN). N2O emissions during the winter were small, increasing significantly in March. Total losses of N2O-N were significantly higher from SRU and U plots, with winter N2O emissions accounting for 50% of annual losses. Nitric oxide fluxes from all plots weresmall during the measurement period (<0.9 ng N m-2 s-1). The NO fluxes from U and AN fertilized plots were significantly higher than from SRU and control plots. NO2 fluxes were always negative (–6 ng N m-2 s-1)indicating deposition, but decreased to –2 ng N m-2s-1 when snow was present on the soil surface. Our resultsindicate that the form of inorganic N applied has an effect on NO+ N2O emissions but not on NO2 fluxes.Sponsored by CAPES – Brasília, Brazil  相似文献   

10.
Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia - the ammonia slip - leaving the flue-gas cleaning system adsorbed to fly-ash or in the effluent of the acidic scrubber was quantified from the stoichiometric reaction of NOx and ammonia assuming no other reaction products was formed. Of the ammonia slip, 37% was associated with the fly-ash and 63% was in the effluent of the acidic scrubber. Based on NOx-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NOx-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number of scenarios were set up ranging from “best case” with no ammonia from the slip ending up in the environment to “worst case” where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the “best case” scenario the highest ammonia dosage was most beneficial demonstrating that the environmental load associated with ammonia production is of minor importance. In contrast, in a “worst case” scenario” NOx-cleaning using SNCR is not recommendable at all, since the impacts from the ammonia slip exceed the saved impacts from the NOx removal. Increased dosage of ammonia for removal of NOx is recommendable as long as less than 10-20% of the ammonia slip to the effluent of the acidic scrubber ends up in the environment and less than 40% of the slip to the fly-ash ends up in the environment. The study suggests that the actual fate of the ammonia slip is crucial, but since the release of the ammonia may take place during transport and at the facilities that treat the wastewater and treat the fly-ash this factor depends strongly on local conditions and may be hard to determine. Thus, LCA-modeling proved useful in assessing the balance between ammonia dosage and NOx-removal in flue-gas cleaning from waste incineration.  相似文献   

11.
Size resolved particle composition and nitric acid (HNO3)measurements from the ASEPS'98 experiment conducted in the BalticSea are used to provide observational evidence of substantialgas-particle transfer of oxidized nitrogen (N) compounds in themarine boundary layer. We then focus on the importance ofHNO3 reactions on sea salt particles in determining spatio-temporal patterns of N dry deposition to marine ecosystems.Modelling results obtained assuming no kinetic or chemical limiton HNO3 uptake and horizontally homogeneous conditions withnear-neutral stability, indicate that for wind speeds 3.5 – 10 ms-1 transfer of HNO3 to the particle phase to formparticle nitrate (NO3 -) may decrease the N depositionvelocity by 50%. We extend this research using the CHEM-COASTmodel to demonstrate that, in a sulphur poor environment undermoderate wind speeds with HNO3 concentrations representativeof those found in the marine boundary layer, inclusion ofheterogeneous reactions on sea spray significantly reducesmodelled NO3 - deposition in the near coastal zone.  相似文献   

12.
A Microsoft Excel spreadsheet‐based design tool has been developed to assist remediation professionals in the design of injection systems for distributing soluble substrate (SS) to enhance in situ anaerobic bioremediation. The user provides site data, design parameters, and unit‐cost information to generate estimates of remediation‐system cost and steady‐state contact efficiency (CESS) for various designs. CESS is estimated from a nonlinear regression equation that includes terms for the SS injection concentration (CI), minimum substrate concentration (CMIN), groundwater travel time between rows of injection wells (TT), SS half‐life (TH), substrate reinjection time interval (TR), and pore volumes of substrate solution injected (PV). With this tool, users can quickly compare the relative costs and performance of different injection alternatives and identify the best design for their specific site conditions. The design process embodied in the tool includes: (1) entering injection‐well configuration and unit costs for well installation, injection, and substrate; (2) determining treatment‐zone dimension; (3) selecting trial injection‐well spacing, time period between substrate reinjection, and injection pore volume; and (4) estimating contact efficiency and capital and life‐cycle costs. This process is then repeated until a final design is selected. In most cases, injection costs increase with increasing CESS. However, the best (highest) ratio of CESS to injection cost typically occurs for CESS in the range of 70 to 80 percent. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l?1 d?1 and 3.84 g COD l?1 d?1, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t?1 TS d?1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t?1 TS d?1 and the inhibition was enhanced with the increase of TON loading.  相似文献   

14.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

15.
Dissolved nitrous oxide (N2O), nitrate (NO3 -), and ammonium (NH4 +) concentrations in an agricultural field drain were intensively measured over the period of field nitrogen (N) fertilisation and for several weeks thereafter. Supersaturations of dissolved N2O were observed in field drain waters throughout the study. On entry to an open drainage ditch, concentrations of dissolved N2O rapidly decreased and a total N2O-N emission via this pathway of 13.2 g over the period of study (45 days) was calculated. This compared with a predicted emission of the order of 300 g, based on measured losses of NO3 - and NH4 + in the field drainage water, and the default IPCC emission factor of 0.01 kg N2O-N per kg Nentering rivers and estuaries. In contrast to widespread evidence of a clear relationship between the amount of N applied to agricultural land and subsequent direct N2O emission from the soil surface, the relationship between the amount of N2O in soil drainage waters and the amount of N applied was poor. We conclude that the complexity, both spatially and temporally, of the processes ultimately responsible for the amount of N2O in agricultural drainage waters make a straightforward relationship between N2O concentration and N application rate unlikely in all but the simplest of systems.  相似文献   

16.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

17.
Chlorinated solvents were released to the surficial groundwater underneath a former dry cleaning building, resulting in a groundwater plume consisting of high concentrations of trichloroethene (TCE) and cis‐1,2‐dichloroethene (cis‐1,2‐DCE) and low concentrations of tetrachloroethene (PCE) and vinyl chloride. The initial remedial action included chemical oxidation via injection of 14,400 gallons of Fenton's Reagent in March 2002, and an additional 14,760 gallons in April 2002. A sharp reduction of contaminant concentrations in groundwater was observed the following month; however, rebound of contaminant concentrations was evident as early as October 2002. A source area of PCE‐impacted soils was excavated in June 2004. Following the excavation, Golder Associates Inc. (2007) implemented a biostimulation plan by injecting 55 gallons of potassium lactate (PURASAL® HiPure P) in September 2005, and again in February 2006. Comparing the preinjection and postinjection site conditions, the potassium lactate treatments were successful in accomplishing a 40 to 70 percent reduction in mass within four months following the second injection. Elevated vinyl chloride concentrations have persisted through both injection events; however, significant vinyl chloride reduction has been observed in one well with the highest total organic carbon (TOC) concentrations following each injection. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
Concentrations of NO2, NO, and O3 from a rooftop monitoring station in Gothenburg, Sweden (2002–2006) were analysed to characterise NO2 pollution. [NO2] was shown to correlate strongly and non-linearly with [NO x ] (NO x ?=?NO?+?NO2), in line with observations in other cities. The [NO2] to [NO x ] fraction fell initially with increasing [NO x ]. At [NO x ] levels >200 ppb, the decline in [NO2]/[NO x ] with increasing [NO x ] levelled out and [NO2]/[NO x ] converged towards approximately 0.15–0.16, independent of [NO x ]. Data from a traffic route site showed the same pattern. This value of [NO2]/[NO x ] at high [NO x ] can be interpreted as the NO2 fraction of the NO x emissions from vehicle exhaust. Situations with high NO x pollution and minimum [NO2]/[NO x ] were always associated with [O3] close to zero. Plotting [Ox] (Ox?=?NO2?+?O3) vs. [NO x ] provided a strong linear correlation for situations dominated by local pollution ([NO]/[NO2]>1). The slope of the regression, a measure of the primary NO2 fraction in NO x emissions, was 0.13 during the day and 0.14 during the night. With stronger winds, the rooftop monitoring station became more similar, in terms of NO2 pollution, to a city street site and a traffic route site, although [NO2] was almost always higher at the street/traffic route locations. The EU standard for the annual average of [NO2] (40 μg m?3) was exceeded, while the hourly standard (200 μg m?3, not to be exceeded more than 18 times per year by 2010) was not exceeded at any of the sites.  相似文献   

19.
Experiments were conducted using a bubbling reactor to investigate nitrogen oxide absorption in the calcium sulfite slurry. The effects of CaSO3 concentration, NO2/NO mole ratio and O2 concentrations on NO2 and SO2 absorption efficiencies were investigated. Five types of additives, including MgSO4, Na2SO4, FeSO4, MgSO4/Na2SO4 and FeSO4/Na2SO4, had been evaluated for enhancing NO2 absorption in CaSO3 slurry. Results showed that CaSO3 concentration had significant impact on NO2 and SO2 absorption efficiencies, and the highest absorption efficiencies of SO2 and NO2 could reach about 99.5 and 75.0 %, respectively. Furthermore, the NO2 absorption was closely related to the NO2/NO mole ratio, and the existence of NO2 in flue gas may promote NO absorption. The presence of O2 in simulated flue gas was disadvantage for NO x removal because it can oxidize sulfite to sulfate. It was worth pointing out that FeSO4/Na2SO4 was the best additive among those investigated additives, as the NO2 removal efficiency was significantly increased from 74.8 to 95.0 %. IC and in situ FTIR results suggest that the main products were NO3 ? and NO2 ? in liquid phase and N2O, N2O5 and HNO3 in gas phase during the CaSO3 absorption process.  相似文献   

20.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号