首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Previous studies investigating effects of personal, demographic, housing and other factors on exposures to volatile organic compounds (VOC) have focused on mean or median exposures, and generally not the high exposures that are of great interest. This paper identifies determinants of personal VOC exposures on a quantile-specific basis using a nationally representative sample. The NHANES 1999–2000 VOC dataset was merged with personal, demographic, housing, smoking and occupation variables. Bivariate analyses tested for differences in geometric means and quantiles across levels of potential exposure determinants. Multivariate sample-weighted ordinary least-squares (OLS) and quantile regression (QR) models were then used to adjust for covariates. We identify a number of exposure determinants, most of which varied by exposure quantile. The most striking finding was the much higher exposures experienced by Hispanics and Blacks for aromatic VOCs (BTEX: benzene, toluene, ethylbenzene and xylenes), methyl tert-butyl ether (MTBE), and 1,4-dichlorobenzene (DCB). Exposure to gasoline, paints or glues, and having a machine-related occupation also were associated with extremely high BTEX and MTBE exposures. Additional determinants included the presence of attached garages and open windows, which affected exposures of BTEX (especially at lower quantiles) and MTBE (especially at higher quantiles). Smoking also increased BTEX exposures. DCB was associated with air freshener use, and PERC with dry-cleaned clothing. After adjusting for demographic, personal and housing factors, age and gender were not significant predictors of exposure. The use of QR in conjunction with OLS yields a more complete picture of exposure determinants, and identifies subpopulations and heterogeneous exposure groups in which some individuals experience very elevated exposures and which are not well represented by changes in the mean. The high exposures of Hispanics and Blacks are perplexing and disturbing, and they warrant further investigation.  相似文献   

2.
Socioeconomic and demographic factors have been found to significantly affect time-activity patterns in population cohorts that can subsequently influence personal exposures to air pollutants. This study investigates relationships between personal exposures to eight VOCs (benzene, toluene, ethylbenzene, o-xylene, m-,p-xylene, chloroform, 1,4-dichlorobenzene, and tetrachloroethene) and socioeconomic, demographic, time-activity pattern factors using data collected from the 1999–2000 National Health and Nutrition Examination Survey (NHANES) VOC study. Socio-demographic factors (such as race/ethnicity and family income) were generally found to significantly influence personal exposures to the three chlorinated compounds. This was mainly due to the associations paired by race/ethnicity and urban residence, race/ethnicity and use of air freshener in car, family income and use of dry-cleaner, which can in turn affect exposures to chloroform, 1,4-dichlorobenzene, and tetrachloroethene, respectively. For BTEX, the traffic-related compounds, housing characteristics (leaving home windows open and having an attached garage) and personal activities related to the uses of fuels or solvent-related products played more significant roles in influencing exposures. Significant differences in BTEX exposures were also commonly found in relation to gender, due to associated significant differences in time spent at work/school and outdoors. The coupling of Classification and Regression Tree (CART) and Bootstrap Aggregating (Bagging) techniques were used as effective tools for characterizing robust sets of significant VOC exposure factors presented above, which conventional statistical approaches could not accomplish. Identification of these significant VOC exposure factors can be used to generate hypotheses for future investigations about possible significant VOC exposure sources and pathways in the general U.S. population.  相似文献   

3.
This study examines the commuter’s exposure to six gasoline-related volatile organic compounds (VOCs): benzene, toluene, ethylbenzene, m-/p-xylene, o-xylene, and formaldehyde. The VOC concentrations to which commuters were exposed in four different commuting modes (driving, subway, walking, and biking) in Boston, Massachusetts, are compared. The VOC concentrations in participants’ homes and offices were also measured. Factors that could influence in-vehicle VOC concentrations, such as different traffic patterns, car model and vehicle ventilation conditions, were also evaluated. Driving a private car was associated with higher VOC concentrations and commuting on urban roadways resulted in the highest VOC concentrations. The use of car heaters resulted in higher in-vehicle VOC concentrations. The longer the subway commuters stayed underground, the higher their VOC exposures. The home-to-work car or subway commute represented about 10 to 20 percent of an individual’s total VOC exposure for these compounds.  相似文献   

4.
ABSTRACT

A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

5.
For 41 days between 25 May 1996 and 27 March 1997, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured by electron capture gas chromatography at Santa Rita near Porto Alegre, RS, Brazil, where light-duty vehicles used either ethanol or a gasoline–MTBE blend. Daily maximum concentrations ranged from 0.19 to 6.67 ppb for PAN and 0.06 to 0.72 ppb for PPN. Linear regression of maximum PPN vs. maximum PAN yielded a slope of 0.105±0.004 (R2=0.974). Diurnal variations of ambient PAN often followed those of ozone with respect to time of day but not with respect to amplitude. This was reflected in the large relative standard deviations associated with the study-averaged PAN/ozone concentration ratio, 0.037±0.105 (ppb/ppb, n=789) and the maximum PAN/maximum ozone concentration ratio, 0.028±0.015 (ppb/ppb, range 0.005–0.078, n=41). On several days PAN accounted for large fractions of the total ambient NOx in the late morning and afternoon hours, e.g., PAN/NOx⩽0.58 and PAN/(NOx–NO) ⩽0.76 on 27 March 1997. The amount of PAN lost by thermal decomposition (TPAN) was comparable in magnitude to that present in ambient air. The ratios TPAN/(PAN+TPAN) were up to 0.53, 0.67 and 0.64 during the warm afternoons of 25, 26 and 27 March 1997, respectively. The highest calculated value of TPAN was 5.6 ppb on 27 March 1997. On that day the 24 h-averaged value of TPAN (1.01 ppb) was nearly the same as that of PAN (1.09 ppb). Using computer kinetic modeling (SAPRC 97 chemical mechanism) and sensitivity analysis of VOC incremental reactivity, we ranked VOC present in Porto Alegre ambient air for their importance as precursors to PAN and to PPN. Using as input data the averages of VOC concentrations measured in downtown Porto Alegre during the ca. 1 yr period March 1996–April 1997, we calculated that the most important precursors to PAN and PPN were the SAPRC 97 model species ARO2 (which includes the aromatics xylenes, trimethylbenzenes, ethyltoluenes, etc.), which accounted for ca. 17% of the total PAN and total PPN formation potentials. Overall, the results indicate a major role for aromatics and alkenes and a minor role for acetaldehyde and ethanol as precursors to peroxyacyl nitrates in the Porto Alegre urban area.  相似文献   

6.
A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

7.
Ambient volatile organic compounds (VOCs) samples were collected at three locations, two in urban areas in Greater Cairo (Ramsis and Haram) and background one in rural area in Menofiya province (Kafr El-Akram), during the period of June, 2004–August, 2004. The highest concentrations of VOCs were found in Ramsis, whereas the lowest concentrations were detected in Kafr El-Akram, and the difference in mean concentrations were statistically significant (p<0.001). Among all of the measured VOCs species, the contribution of individual VOC to the total VOCs concentration were very similar in Ramsis and Haram locations, toluene was the most abundant compound followed by (m, p)-xylene. This similarity implies a similar emission sources of VOCs in both urban locations, vehicle exhausts are the dominant one. Greater Cairo has high levels of volatile aromatic hydrocarbons compared with many polluted cities in the world. The BTEX (benzene: toluene: ethylbenzene: xylenes) concentration ratios were (2.01:4.94:1:4.95), (2.03:4.91:1:4.87) and (2.31:2.98:1:2.59) in Ramsis, Haram and Kafr El-Akram, respectively. The average toluene/benzene (T/B), (m, p)-xylene/benzene ((m, p)-X/B) and o-xylene/benzene (o-X/B) concentration ratios were 2.45, 1.61and 0.85, respectively in Ramsis and 2.42, 1.61 and 0.78, respectively in Haram. The ratios in both urban locations were of the same magnitude and close to those obtained from automotive exhausts, indicating that the ambient BTEX originate mainly from motor vehicle emissions. However, the (T/B), ((m, p)-X/B) and (o-X/B) concentration ratios were 1.29, 0.71 and 0.41 in Kafr El-Akram, respectively. These ratios were lower than those found in Ramsis and Haram locations and in automotive exhaust, suggesting that the BTEX in Kafr El-Akram do not come from a local source and are exclusively results from the diffusion and dispersion of VOCs produced from the traffic density in the surrounding cities. Significant positive correlation coefficients (p<0.001) were found between the concentrations of BTEX compounds at the three sampling locations. The diurnal variation of VOCs concentrations in Ramsis location showed two daily peaks linked to traffic density.  相似文献   

8.
Bimonthly integrated measurements of NO2 and NH3 have been made over one year at distances up to 10 m away from the edges of roads across Scotland, using a stratified sampling scheme in terms of road traffic density and background N deposition. The rate of decrease in gas concentrations away from the edge of the roads was rapid, with concentrations falling by 90% within the first 10 m for NH3 and the first 15 m for NO2. The longer transport distance for NO2 reflects the production of secondary NO2 from reaction of emitted NO and O3. Concentrations above the background, estimated at the edge of the traffic lane, were linearly proportional to traffic density for NH3 (microg NH3 m(-3) = 1 x 10(-4) x numbers of cars per day), reflecting emissions from three-way catalysts. For NO2, where emissions depend strongly on vehicle type and fuel, traffic density was calculated in terms of 'car equivalents'; NO2 concentrations at the edge of the traffic lane were proportional to the number of car equivalents (microg NO2 m(-3) = 1 x 10(-4) x numbers of car equivalents per day). Although absolute concentrations (microg m(-3)) of NH3 were five times smaller than for NO2, the greater deposition velocity for NH3 to vegetation means that approximately equivalent amounts of dry N deposition to road side vegetation from vehicle emissions comes from NH3 and NO2. Depending on traffic density, the additional N deposition attributable to vehicle exhaust gases is between 1 and 15 kg N ha(-1) y(-1) at the edge of the vehicle lane, falling to 0.2-10 kg N ha(-1) y(-1) at 10 m from the edge of the road.  相似文献   

9.
Abstract

With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NOx]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NOx in the case of a class-8 truck but were more accurate as the truck weight increased.  相似文献   

10.
Two measurement campaigns of volatile organic compounds (VOC) were carried out in the industrial city of Dunkerque, using Radiello passive samplers during winter (16–23 January) and summer (6–13 June) 2007. 174 compounds were identified belonging to six chemical families. Classifying sampling sites with similar chemical profiles by hierarchical ascending classification resulted in 4 groups that reflected the influence of the main industrial and urban sources of pollution. Also, the BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) quantification allowed us to map their levels of concentration. Benzene and toluene (BT) showed high concentrations in Northern Dunkerque reflecting the influence of two industrial plants. Differences among spatial distributions of the BT concentrations over contrasted meteorological conditions were also observed. An atypical ratio of T/B in the summer samples led us to investigate the BTEX origins shedding light on the contribution of pollutants transported across various zones of VOC emissions situated in Europe.  相似文献   

11.
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".  相似文献   

12.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong   总被引:21,自引:0,他引:21  
Lee SC  Chiu MY  Ho KF  Zou SC  Wang X 《Chemosphere》2002,48(3):375-382
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong.  相似文献   

13.
Urban roadside levels of benzene, toluene, ethylbenzene and xylenes (BTEX) were investigated in three typical cities (Guangzhou, Macau and Nanhai) in the Pearl River Delta Region of south China. Air samples were collected at typical ground level microenvironments by multi-bed adsorbent tubes. The BTEX concentrations were determined by thermal desorption–gas chromatography–mass selective detector (TD–GC–MSD) technique. The mean concentrations of benzene, toluene, ethylbenzene and xylenes were, respectively, 51.5, 77.3, 17.8 and 81.6 μg/m3 in Guangzhou, 34.9, 85.9, 24.1, 95.6 μg/m3 in Macau, and 20.0, 39.1, 3.0 and 14.2 μg/m3 in Nanhai. The relative concentration distribution pattern and mutual correlation analysis indicated that in Macau BTEX were predominantly traffic-related while in Guangzhou benzene had sources other than vehicle emission. In Nanhai, both benzene and toluene had different sources other than vehicle emission. The samples collected from Guangzhou showed that BTEX had significant higher concentrations in November than those in July.  相似文献   

14.
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.  相似文献   

15.
This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO2) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (< 5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (> or = 77% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs. However, except for toluene, OVM BTEX measurements generally exceeded their continuous counterparts with a mean bias of 5-10%. Although interpretation of the study results was limited due to small sample sizes, diffusion barrier influences caused by shelters that housed OVMs and differences in sampling heights between OVMs and auto-GC inlet may explain the overestimation.  相似文献   

16.
Over the past decade, there has been much publicity surrounding the impact of Methyl tert -butyl ether (MTBE) on drinking water supplies in the United States. In California, the presence of MTBE in groundwater and drinking water has led to a ban on the future use of MTBE in gasoline. Other states, such as those in the northeast, are also seeking ways to reduce or eliminate the use of MTBE due to perceived threats to the environment and public health. Despite claims about the incidence of MTBE in drinking water, no comprehensive characterization has been conducted on the available drinking water monitoring data. This paper provides a detailed analysis of the MTBE drinking water data compiled by the California Department of Health Services (CDHS) from 1995 to 2000. We find that MTBE was detected in about 1.3% of all drinking water samples, 2.5% of drinking water sources, and 3.7% of drinking water systems in California over this 6-year period. Our analysis reveals that many drinking water sources are not sampled routinely for MTBE, and in those sources that appear to be affected by MTBE, the compound is not consistently detected. The majority of MTBE detections are also concentrated in several geographic areas, which contain about 9–21% of the total California population. Average detected MTBE concentrations have decreased significantly since 1995 and 1996, ranging from 5 to 15 ppb over the last 3 years depending on the outcome of interest. Of the samples in which MTBE was present above the analytical detection limit, the concentrations in approximately 73% of drinking water samples and 86% of drinking water sources and systems were below the State's primary health-based standard of 13 ppb. Our findings suggest that, although some drinking water supplies in California have been affected by MTBE, the majority of drinking water sources and systems either have not been affected at all or contain MTBE at concentrations below levels that are likely to be of health concern.  相似文献   

17.
As part of a larger study, personal sampling of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) was carried out by 55 nonsmoking volunteers for a period of 14 days. Thirty-nine persons lived in a rural area near Hannover (Germany) with hardly any traffic at all, while 16 persons lived in a high-traffic city street in Hannover. The personal exposure level of the persons in the rural area (some commuting to Hannover) was: 2.9, 24.8, 2.4 and 7.7 μg m−3 for benzene, toluene, ethylbenzene and the sum of xylenes, respectively, while the corresponding data for the high traffic city streets were 4.0, 22.2, 2.8 and 9.7 μg m−3 (geometric means). Four microenvironments have been monitored which contribute to the total exposure to BTEX, i.e. the home, the outdoor air, the workplace and the car cabin. The most important microenvironment for non-working persons is the private home. The concentration of most BTEX in the private home is almost equal to the personal exposure level, demonstrating that the indoor pollution in the home makes by far the highest contribution to the total exposure. For working people (mostly office workers), the workplace is the second most important microenvironment contributing to the total BTEX exposure. Taking all working persons into consideration (independent of the location of their private home) the personal exposure level is higher by a factor of 1.2–1.4 than that of the workplace (for toluene this factor is 2.2). As already found by others, very high BTEX concentrations may be found in car cabins, in particular, if the engine is gasoline-driven. In the cabin of 44 cars in the rural/urban area average benzene concentrations (geometric mean) of 12/14 μg m−3 and a maximum value of ∼550 μg m−3 were found. On average, the participating volunteers drove their car for 45 min day−1 (i.e. 3% of the day). Nevertheless, the car cabin constitutes about 10% of the total benzene exposure. Refueling of the car during the 14-day sampling period has only a small effect on the personal exposure level.  相似文献   

18.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

19.
Abstract

This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO2) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (<5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (≥7% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs.  相似文献   

20.
In June 1991, General Motors Research and Development Center (GMR&D) participated in a remote sensing study conducted by the California Air Resources Board and the U. S. Environmental Protection Agency. During this study, the GMR&D remote sensor was used to measure the carbon monoxide (CO) and hydrocarbon (HC) emissions from approximately 15,000 vehicles. The vehicle type (passenger car, light-duty truck, or medium/heavy-duty truck), manufacturer, and model year were identified for each vehicle by acquiring registration data from the state of California. Analyses were performed separately for each vehicle type and for passenger cars by separate model years. The data indicate that the passenger cars with the highest 10% of CO emissions generated approximately 58% of the total CO from all cars. Similarly, the 10% highest HC-emitting cars generated 65% of the total HC from cars. It was found that for each model year of vehicle, the distribution of emission concentrations followed a logarithmic relationship. The logarithmic functions that describe these relationships can be used to estimate the fraction of vehicles that emitted at or above any given concentration of CO or HC. However, these logarithmic functions only describe measured distributions for vehicles emitting more than 1% CO and 0.015% HC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号