首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heavy metal contamination of soil resulting from treated wastewater irrigation can cause serious concerns resulting from consuming contaminated crops. Therefore, it is crucial to assess hazard related to wastewater reuse. In the present investigation, we suggest the use of biomarker approach as a new tool for risk assessment of wastewater reuse in irrigation as an improvement to the conventional detection of physicochemical accumulation in irrigated sites. A field study was conducted at two major sites irrigated with treated wastewater and comparisons were made with a control site. Different soil depths were considered to investigate the extent of heavy metal leaching, the estrogenic activity, and the biomarker response. Results have shown that a longer irrigation period (20 years) caused a slight decrease in soil metal levels when compared to the soil irrigated for 12 years. The highest levels of Cr, Co, Ni, Pb, and Zn were detected at 20 and 40 cm horizons in plots irrigated with wastewater for 12 years. The latter finding could be attributed to chemical leaching to deeper plots for longer irrigation period. Furthermore, the treated wastewater sample showed a high estrogenic activity while none of the soil samples could induce any estrogenic activity. Regarding the stress response, it was observed that the highest stress shown by the HSP47 promoter transfected cells was induced by a longer irrigation period. Finally, the treated wastewater and the irrigated soils exhibited an overexpression of HSP60 in comparison with reference soil following 1 h exposure. In conclusion, in vitro techniques can be efficiently used to assess potential hazard related to wastewater reuse.  相似文献   

2.
The current study was designed to investigate the potential human health risks associated with consumption of food crops contaminated with toxic heavy metals. Cadmium (Cd) concentration in surface soils; Cd, lead (Pb) and chromium (Cr) in the irrigation water and food crops were above permissible limits. The accumulation factor (AF) was >1 for manganese (Mn) and Pb in different food crops. The Health Risk Index (HRI) was >1 for Pb in all food crops irrigated with wastewater and tube well water. HRI >1 was also recorded for Cd in all selected vegetables; and for Mn in Spinacia oleracea irrigated with wastewater. All wastewater irrigated samples (soil and food crops) exhibited high relative contamination level as compared to samples irrigated with tube well water. Our results emphasized the need for pretreatment of wastewater and routine monitoring in order to avoid contamination of food crops from the wastewater irrigation system.  相似文献   

3.
The analysis of the horizons of 12 soil profiles confirm occasionally significant levels of Cd, Pb and Zn contamination in the areas surrounding two lead and zinc smelters in the North of France. A pedological approach enabled the original Cd, Pb and Zn content of the horizons to be estimated, based on physico-chemical characteristics of soil unaffected by contamination. The main contamination was found in the upper 20-30 cm. Traces of Cd and Zn contamination were found at a depth of around 2 m. The mobility of the metals may be classified in the following order: Cd>Pb> or =Zn. The concentration profile of a metal seems insufficient to evaluate its movement as the metal could have been leached beyond the contaminated horizons. The depth reached by the metals increases with their concentration in the surface horizon; a decrease in pH and an increase in sand content seem to facilitate their movement. The depth reached by Zn increases with the organic carbon content in the surface horizon. Earthworm galleries act as paths via which metals migrate downwards  相似文献   

4.
Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress. Results showed that the two plant species under study were suitable to reduce the mobility and the availability of these elements. Moreover, the plant growth was better on CFA amended MTE-contaminated soils, and the plant sensitivity to MTE-induced physiological stress, as studied through photosynthetic pigment contents and oxidative damage was lower or similar. In conclusion, these results supported the usefulness of aided phytostabilisation of MTE-highly contaminated soils.  相似文献   

5.
白银市区土壤作物系统重金属污染分析与防治对策研究   总被引:22,自引:0,他引:22  
通过对白银市区土壤作物系统重金属含量与分布变化特征的调查分析,结果表明,只有东大沟污灌区土壤作物污染严重,Cd,Pb超标明显;西大沟清污混灌区土壤环境为轻度污染,但作物质量符合标准要求;其余灌区土壤物质符合标准要求。最后,根据土壤作物重金属含量分布变化特征,提出了相应的防治对策。  相似文献   

6.
The modified BCR three-step sequential extraction procedure was used to examine the temporal dynamics of trace elements in soils contaminated by an accidental spill from an opencast mine in south-west Spain. Soils were mainly contaminated with pyritic sludge and acidic wastewater, whereas some soils were affected only by acidic wastewater. The distributions obtained for both some major (Ca, Fe and Mn) and trace elements (As, Cd, Cu, Pb and Zn) in the sludge and soil samples taken at different times after the accident, 1-3 months and 21 months, were compared. Sequential extractions were useful in identifying different sources of contamination, and in obtaining additional information on the solubility of secondary minerals formed by pyrite oxidation. Thus, the effectiveness of the BCR procedure has proved to be a useful tool for predicting short- and long-term mobility of trace elements, even in complex environmental scenarios.  相似文献   

7.
Although epidemiological studies have found a significant amount of toxins in surface water, a complex link between animals’ access to wastewater and associated animal and human welfare losses needs to be explored. The scarcity of safe water has put stress on the utilization of wastewater for crops and livestock production. The access of animals to wastewater is related to the emergence of dangerous animal’s diseases, hampering productivity, increasing economic losses, and risking human health along the food chain. This review explores use of wastewater for agriculture, epidemiological evidence of microbial contamination in wastewater, and animal and human welfare disruption due to the use of wastewater for crop and livestock production. More specifically, the review delves into animals exposure to wastewater for bathing, drinking, or grazing on a pasture irrigated with contaminated water and related animal and human welfare losses. We included some scientific articles and reviews published from 1970 to 2017 to support our rational discussions. The selected articles dealt exclusively with animals direct access to wastewater via bathing and indirect access via grazing on pasture irrigated with contaminated wastewater and their implication for animal and human welfare losses. The study also identified that some policy options such as wastewater treatments, constructing wastewater stabilization ponds, controlling animal access to wastewater, and dissemination of necessary information to ultimate consumers related to the source of agricultural produce and wastewater use in animal and crop production are required to protect the human and animal health and welfare.  相似文献   

8.
Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P相似文献   

9.
Level and distribution of DDT in surface soils from Tianjin, China   总被引:28,自引:0,他引:28  
Gong ZM  Tao S  Xu FL  Dawson R  Liu WX  Cui YH  Cao J  Wang XJ  Shen WR  Zhang WJ  Qing BP  Sun R 《Chemosphere》2004,54(8):1247-1253
One hundred and eighty eight surface soil samples were collected from the Tianjin area to study the contamination of DDT and its metabolites. Measurements were taken for p,p'-DDE, p,p'-DDD, p,p'-DDT, o,p'-DDE, o,p'-DDD and o,p'-DDT for all samples. The results indicated that p,p'-DDT and p,p'-DDE were the predominant contaminant compounds in the surface soil samples, with mean concentrations of 27.5 and 18.8 ng g(-1) respectively. No significant differences in DDT concentrations were found between the soils from wastewater treated irrigated areas and other areas, suggesting that wastewater irrigation is not an important source of DDT in the area. However, the spatial distribution of soil DDTs levels in the area did correlate well with early direct application rates of pesticides. In addition, both pH level and organic carbon content are also known factors affecting the level of DDT and its metabolites. Although it was assumed that the use of these chemicals was banned in the early 1980s, the current concentration levels appear to be too high to be mere residuals after 20 years degradation.  相似文献   

10.
A procedure was developed for determination of 16 polycyclic aromatic hydrocarbons (PAHs) in heavily contaminated paddy soil from wastewater irrigated farmland near Tianjin. The sample was distilled with accelerated solvent extraction (ASE), purified by a silica gel column, and measured with GC/MS. The optimal conditions for the distillation were at 140 degrees C (1500 psi) with a 1:1 mixture of dichloromethane and acetone for 5 min. Application of cyclohexane for extract transfer improved the recovery when the ASE extraction was followed by a silica gel cleanup procedure. Recoveries from the method for 16 PAHs ranged from 57-140% with the coefficients of variation of the results ranging from 0.35% to 5.75%. The total 16 PAHs in a composite sample collected from a wastewater irrigated paddy field near Tianjin was 3.90 mg/kg.  相似文献   

11.
The distribution and chemical fractionation of heavy metals retained in mangrove soils receiving wastewater were examined by soil column leaching experiments. The columns, filled with mangrove soils collected from two swamps in Hong Kong and the People's Republic of China, were irrigated three times a week for 150 days with synthetic wastewater containing 4 mg l(-1) Cu, 20 mg l(-1) Zn, 20 mg l(-1) Mn and 0.4 mg l(-1) Cd. Soil columns leached with artificial seawater (without any heavy metals) were used as the control. At the end of the leaching experiments, soil samples from each column were divided into five layers according to its depth viz. 0-1, 1-3, 3-5, 5-10 and > 10 cm, and analyzed for total and extractable heavy metal content. The fractionation of heavy metals in the surface soil samples (0-1 cm) was investigated by the sequential extraction technique. In both types of mangrove soils, the surface layer (0-1 cm) of the columns receiving wastewater had significantly higher concentrations of total Cu, Cd, Mn and Zn than the control. Concentrations declined significantly with soil depth. The proportion of exchangeable heavy metals in soils receiving wastewater was significantly higher than that found in the control, about 30% of the total heavy metals accumulated in the soil masses of the treated columns were extracted by ammonium acetate at pH 4. The sequential extraction results show that in native mangrove soils (the soils without any treatment), the major portion of Cu, Zn, Mn and Cd was associated with the residual and precipitated fractions with very low concentrations in more labile phases. However, in mangrove soils receiving wastewater, a significantly higher percentage of Mn, Zn and Cd was found in the water-soluble and exchangeable fractions. Copper appeared to be more strongly adsorbed in mangrove soils than the other heavy metals. In general, heavy metal accumulation in the surface mangrove soils collected in Hong Kong was higher than those in the PRC, although the metals in the latter soil type were more strongly bound. These findings suggest that whether the heavy metal retained in managrove soils becomes a secondary source or a permanent sink would depend on the kinds of heavy metals and also the types of mangrove soils.  相似文献   

12.
Tomato and cucumber seedlings were distributed into 10 groups (five for each plant) of 15 plants each. The plants were irrigated for 10 weeks with primary treated wastewater (group A), secondary treated wastewater (group B), chlorinated secondary treated wastewater (group C), a fertilizer dilution (group F), and tap water (group M). All precautions were taken to secure that there was no direct contact between the wastewater and the edible portions of the crops. During this period and on a weekly basis, the height and number of leaves was monitored, while, at the end, the dry weight of leaves, stems, and roots for each plant of each group was measured. Based on these growth parameters, both types of plant in groups A and F recorded the most significant development compared to the other three groups. The plants irrigated with tap water recorded the smallest development, in every case. Plants in groups B and C were similar, with a slight (but not significant) superiority for the plants irrigated with secondary treated wastewater, probably as a result of some phytotoxic effects of residual chloride in the chlorinated wastewater. The presence of nutrients and specifically nitrogen in the various solutions explains the differences satisfactorily. The vegetables grown on the plants of each group were harvested, and their surface tissue analyzed for total coliforms (TC) and enterococci (EC). Tomatoes grown on the plants of groups A and B recorded the highest values for TC, with 505 and 490 cfu/g, respectively, whereas, for cucumbers, those values were 342 and 450 cfu/g, respectively. Enterococci were detected on the surface of harvested vegetables from groups A and B, but the small number of cases and their random character cannot support any strong relations between the used wastewater and their presence. The TC values in group C were very low, far lower than those if group F. No EC were found in either group C or group F. These primary results suggested that irrigation with appropriate disinfected wastewater, even of such high-risk cultivations of vegetables eaten raw, should not be discarded completely as unsafe, but be reconsidered and studied further. However, the use of undisinfected wastewater in such greenhouse cultivations, where all safety precautions have been taken to prevent any contact of the fruits with the soil or the wastewater, does not prove to be 100% safe.  相似文献   

13.
Copper contamination in paddy soils irrigated with wastewater   总被引:19,自引:0,他引:19  
Cao ZH  Hu ZY 《Chemosphere》2000,41(1-2):3-6
Copper (Cu) contamination was investigated in paddy soils where Cu-rich wastewater (12 mg Cu/l) was used for irrigation. The results showed that Cu contamination increased the soil Cu content from 17.0 mg Cu/kg in the non-wastewater irrigated soils (NWIS) to 101.2 mg Cu/kg in the wastewater irrigated soils (WIS), and Cu accumulated mostly in the surface layer (0-10 cm) of the paddy soil. The average Cu contents in brown rice, rice hull and rice straw from NWIS were 1.4, 7.3 and 14.5 mg Cu/kg, while those from WIS were 15.5, 133.2, and 101.4 mg Cu/kg, respectively. Correlation analysis revealed that the relationship between the Cu content in the rice straw and the rice hull with the total Cu content of the soil could be described by an exponential function (R2 = 0.921 and 0.831, respectively; P <0.01). Rice plants grown in the WIS showed symptoms of black roots, less effective tiller, etc. Subsequently, the rice yield decreased by 18-25%, compared with that grown in NWIS.  相似文献   

14.
In this experiment, the impacts of pulp mill effluent irrigation, Fraser cottonwood (Populus deltoides 'Fraser') seedlings, and pulp sludge and manure soil amendments on sodium accumulation and distribution in the soil profile were evaluated during a 6 month greenhouse study. Sludge soil amendments and wastewater irrigation did not reduce stem biomass production of the cottonwood. Increased stem biomass production associated with manure soil amendments resulted in greater total uptake of sodium into stem material. This uptake was 0.002% of wastewater sodium inputs. In containers with seedlings, sodium concentrations were less in the surface horizon and more in the lower horizons than in containers with no seedlings. Infiltration rates and total sodium accumulation in the soil profile were not affected by the presence of Fraser cottonwood or the application of sludge or manure amendments to soil.  相似文献   

15.
As a result of processing of metal ores, trace metals have contaminated large areas of northern France. Metal migration from the soil to groundwater presents an environmental risk that depends on the physico-chemical properties of each contaminated soil. Soil water samples were obtained over the course of 1 year with zero-tension lysimeters from an acidic, loamy, metal contaminated soil. The average trace metal concentrations in the soil water were high (e.g. for Zn 11 mg l-1 under the surface horizon), but they varied during the sampling period. Zn concentrations were not correlated with pH or total organic carbon in the solutions but were correlated with Cd concentrations. On average, 95% of the Zn and Cd but only 50% of Pb was present in a dissolved form. Analytical transmission electron microscopy was used to identify the Zn or Pb carriers. Colloids containing Pb and Zn were biocolloids, whereas colloids containing only Zn were smectites.  相似文献   

16.
Abstract

Many processes have been investigated to dispose of obsolete pesticide stocks and clean up wastewater and contaminated soil. The processes vary in their stages of development and commercial utility. With the exception of incineration, no single process may be amenable to all pesticide waste. Thus, any chosen process must consider first the chemical constituents needing remediation, their concentration, and desired or regulated cleanup objectives. Incineration seems too impractical and expensive to clean up routinely generated wastewater and contaminated soil, but it may currently be the only practical option for obsolete stocks . Practical remediation processes for wastewater and contaminated soil produced by small waste generators are discussed. Cleanup should be viewed as an integration of physical, chemical, and biological technologies.  相似文献   

17.
Alfalfa plants were grown in soil-pots contaminated with a mixture of Cd(II), Cu(II), Ni(II), and Zn(II), (at 50 mg/kg each) at pHs of 4.5, 5.8, and 7.1. The plants were fertilized using a nutrient solution, which was adjusted appropriately to the same pH. Plants in the control treatment were grown in the absence of the heavy metals mixture. The growth of the control plants was the same at the three pHs studied and the heavy metal stressed plants also showed similar behavior at each pHs. There were statistically significant differences (P<0.05) between the shoot length of the control treatment plants and the length of plants grown in the presence of the heavy metal mixture. Under the effects of the heavy metal mixture, nickel was the most accumulated element in the shoot tissue, with 437, 333, and 308 ppm at pH 7.1, 5.8, and 4.5, respectively. Cadmium was found to be second in accumulated concentrations with 202 ppm, 124 ppm, and 132 ppm at pH 7.1, 5.8, and 4.5, respectively, while zinc was third, followed by copper. The maximum relative uptakes (element in plant/element in soil-water-solution) were found to be 26 times for nickel, 23 times for cadmium, 12 times for zinc. and 6 times for copper. We considered these relations as indicative of the ability of alfalfa plants to take up elements from a soil matrix contaminated with a mixture of cadmium, copper, nickel, and zinc.  相似文献   

18.
Al Nasir F  Batarseh MI 《Chemosphere》2008,72(8):1203-1214
The residues of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated benzenes (CBs) and phenols were investigated for soil, wastewater, groundwater and plants. The uptake concentration of these compounds was comparatively determined using various plant types: Zea mays L., Helianthus annus L., Capsicum annum L., Abelmoschus esculentus L., Solanum melongena L. and Lycopersicon esculentum L. which were grown in a pilot site established at Mutah University wastewater treatment plant, Jordan. Soil, wastewater, groundwater and various plant parts (roots, leaves and fruits) samples were extracted in duplicate, cleaned up by open-column chromatography and analyzed by a multi-residue analytical methods using gas chromatography equipped with either mass selective detector (GC/MS), electron capture detector (GC/ECD), or flame ionization detector (FID). Environmentally relevant concentrations of targeted compounds were detected for wastewater much higher than for groundwater. The overall distribution profiles of PAHs and PCBs appeared similar for groundwater and wastewater indicating common potential pollution sources. The concentrations of PAHs, PCBs and phenols for different soils ranged from 169.34 to 673.20 microg kg(-1), 0.04 to 73.86 microg kg(-1) and 73.83 to 8724.42 microg kg(-1), respectively. However, much lower concentrations were detected for reference soil. CBs were detected in very low concentrations. Furthermore, it was found that different plants have different uptake and translocation behavior. As a consequence, there are some difficulties in evaluating the translocation of PAHs, CBs, PCBs and phenols from soil-roots-plant system. The uptake concentrations of various compounds from soil, in which plants grown, were dependent on plant variety and plant part, and they showed different uptake concentrations. Among the different plant parts, roots were found to be the most contaminated and fruits the least contaminated.  相似文献   

19.
Lei X  Fujimaki H  Lu Y  Zhang Z  Maekawa T 《Chemosphere》2007,66(11):2077-2086
In order to find the optimal running conditions and mechanisms of ammonia removal through a soil trench system that is designed for treating pretreated methane fermentation effluent, a soil column whose structure was similar to the soil trench system was prepared, and irrigated with wastewater below 30 °C. At the beginning, ammonia was mainly adsorbed by the soils, and the ammonia adsorption capacity of soils gradually saturated. After the 12th day, nitrification began in the soil column; the ammonia in the soil column decreased sharply, and the nitrite and nitrate peak appeared sequentially as the wastewater application rate decreased from 0.74 to 0.37 l h−1. When the nitrification in the soil column reached a steady-state, 98% of all the ammonia in the influent was transformed into nitrate.

By changing the running conditions such as temperature, aeration, and wastewater application rate, it was found that the ammonia removal efficiency can be improved by aeration and impeded by low temperature. In these three variables, wastewater application rate has much greater affect on the ammonia removal efficiency; a lower wastewater application rate can increase the ammonia removal efficiency substantially because of the longer travel time.  相似文献   


20.
In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal wastewater was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent of the sewage treatment plant (STP) of Braunschweig is used for irrigation, while during summer digested sludge is mixed with the effluent. In the present case study six wells and four lysimeters located in one of the irrigated agricultural fields were monitored with regard to the occurrence of 52 pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields. In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mugl(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while passing the top soil layer. Potential estrogenic effects are likely to disappear after irrigation, since the most potent steroid estrogens were not measurable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号