首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Phytoplankton standing crop (chlorophyll a) and primary productivity were recorded, and zooplankton biomass was estimated in the two large bays of Australia, the Great Australian Bight on the south coast (December, 1965) and the Gulf of Carpentaria on the north coast (December, 1968). In the Gulf of Carpentaria, the phytoplankton standing crop (average, 27.3 mg chlorophyll a m-2) and primary productivity (average, 133.1 mg C m-2 h-1), as well as zooplankton biomass (average, 305.3 mg wet weight m-3) are much higher than in the Great Australian Bight (12.1 mg chlorophyll a m-2, 18.2 mg C m-2 h-1, 7.1 mg wet weight m-3, respectively). The unexpectedly low productivity values in the Great Australian Bight are attributable to environmental conditions of this bay, which obtains neither replenishment of nutrients from the land nor receives upwelling of deep water.  相似文献   

2.
Skeletonema costatum (Greville) Cleve isolated from Narragansett Bay, USA, was incubated at 3 light intensities (ca. 0.008, 0.040 and 0.075 ly min-1) under a 12 h light: 12 h dark (12L:12D) photoperiod at 2°, 10° and 20°C. Cellular chlorophyll a increased at intensities less than ca. 0.040 ly min-1; increases occured within one photoperiod at temperatures above 10°C. Cellular carbohydrate increased with light intensity at all temperatures; increases during the photophase were due to net production of the dilute acid-soluble fraction. Cellular protein increased during the photoperiod at 10° and 20°C; there was little difference in cellular protein among all cultures after one photoperiod. The rate at which cellular chlorophyll a increased in response to a decrease in light suggests that diel variation in cellular chlorophyll a is temperature-dependent in S. costatum. Protein: carbohydrate ratios ranged from ca. 0.5 to 2.0 over a diel cycle; ratios increased at lower intensities and higher temperatures. The diel range in protein:carbohydrate ratios equals that in cultures developing nitrogen deficiency; thus, use of this ratio as an index to phytoplankton physiological state must account for diel light effects.  相似文献   

3.
From May 2002 to October 2003, a fortnightly sampling programme was conducted in a restricted macrotidal ecosystem in the English Channel, the Baie des Veys (France). Three sets of data were obtained: (1) physico-chemical parameters, (2) phytoplankton community structure illustrated by species composition, biovolume and diversity, and (3) primary production and photosynthetic parameters via P versus E curves. The aim of this study was to investigate the temporal variations of primary production and photosynthetic parameters in this bay and to highlight the potential links with phytoplankton community structure. The highest level of daily depth-integrated primary production Pz (0.02–1.43 g C m−2 d−1) and the highest maximum photosynthetic rate P B max (0.39–8.48 mg C mg chl a −1 h−1) and maximum light utilization coefficient αB [0.002–0.119 mg C mg chl a −1 h−1 (μmol photons m−2 s−1)] were measured from July to September. Species succession was determined based on biomass data obtained from cell density and biovolume measurements. The bay was dominated by 11 diatoms throughout the year. However, a Phaeocystis globosa bloom (up to 25 mg chl a m−3, 2.5 × 106 cells l−1) was observed each year during the spring diatom bloom, but timing and intensity varied interannually. Annual variation of primary production was due to nutrient limitation, light climate and water temperature. The seasonal pattern of microalgal succession, with regular changes in composition, biovolume and diversity, influenced the physico-chemical and biological characteristics of the environment (especially nutrient stocks in the bay) and thus primary production. Consequently, investigation of phytoplankton community structure is important for developing the understanding of ecosystem functioning, as it plays a major role in the dynamics of primary production.  相似文献   

4.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

5.
Obligate mixotrophy inLaboea strobila,a ciliate which retains chloroplasts   总被引:2,自引:0,他引:2  
The planktonic ciliateLaboea strobila Lohmann sequesters photosynthetically functional chloroplasts derived from ingested algae. The chloroplasts lie free in the cytoplasm and are most abundant just under the pellicle of the ciliate. The maximum rate of photosynthesis (Pmax) was 925 pg C ciliate-1h-1 (3.7 pg C pg chl.a -1h-1). At saturating irradiance, the amount of carbon fixed h-1 equaled 12.6% of the body carbon of the ciliate. To grow,L. strobila requires both light and algal food. In the absence of food, survival ofL. strobila is significantly longer in the light than in the dark. Based on ingestion rate and photosynthetic rate, we calculate that photosynthesis can make an important contribution to this ciliate's carbon budget even when algal food is plentiful.  相似文献   

6.
Diel oscillations in the photosynthesis-irradiance (P-I) relationship are described for marine phytoplankton assemblages at 6 stations in an upwelling area off the southern California coast (USA) between May and August 1980. The initial slope () and asymptote (P max) of P-I curves changed significantly over the day; both parameters were in phase and had similar changes in amplitude. The diel oscillations in photosynthesis appeared unrelated to changes in chlorophyll a concentrations. Amplitudes of daily variations in photosynthesis ranged from approximately 3 to 9, as measured by the maximum to minimum ratio for photosynthetic capacity (P max). Diatom-rich samples collected during an upwelling event and those dominated by dinoflagellates both had midday to early afternoon maxima in and P max. Samples from other locations had peak photosynthetic activity later in the afternoon. The relationship between and P max was consistent in all phytoplankton samples analyzed, with a surprisingly high correlation considering the spatial and temporal scales encompassed in this study. These results indicate that the photosynthesis-irradiance (P-I) relationship is time-dependent and, moreover, that changes in and P max are closely coupled for a variety of natural phytoplankton assemblages.  相似文献   

7.
Hameedi  M. J. 《Marine Biology》1978,48(1):37-46
Measurements of primary productivity, chlorophyll a, incident solar radiation, phosphate-P, silicate-Si, nitrate-N, nitrite-N, ammonium-N, temperature and salinity were made in the Marginal Ice Zone of the Chukchi Sea in summer 1974. Low to moderate levels of primary productivity (0.07 to 0.97 g C m-2 half-day-1) were observed; primary productivity exceeded 3 g C m-2 half-day-1 at two stations. Surface primary productivity was nitrogen-limited at most stations. Mean chlorophyll a concentration in the photic zone varied from 0.4 to 17.8 mg m-3. Higher concentrations and significant subsurface accumulation of chlorophyll a, reaching 40 mg m-3, were observed in July at stations near the ice-edge than those in open water. No chlorophyll maximum was noted in September, when values ranged from 0.4 to 2.2 mg m-3. It is postulated that the contribution of sea-ice algae to the total chlorophyll content can be substantial, but that the stay of these cells in the water column may not be long. Non-linear regression estimates from solar radiation and chlorophyll-specific primary productivity data showed a maximal photosynthetic rate of 18 mg C mg chlorophyll a -1 half-day-1, an optimal light intensity of 54 langleys half-day-1, and markedly reduced primary productivity at moderately higher light intensities. These features indicate that phytoplankton was shade-adapted.  相似文献   

8.
At two fixed stations in the Equatorial Atlantic Ocean (0°–4° W), the physical, chemical and biological properties of the euphotic layer were determined for 14 d (Station A: 5–18 February, 1979) and 13 d (Station B: 20 October–7 November, 1979), respectively. The stability of the water column allowed comparison of 3 different “systems”: (i) a well-illuminated and nitrate-depleted mixed layer; (ii) a chlorophyll maximum layer (chl a max) in the thermocline which is poorly illuminated (6.3% of surface irradiance); (iii) a well-illuminated but nitrate-rich (>0.9 μg-at l-1) mixed layer. In each layer the particulate organic carbon (COP), nitrogen (NOP) and phosphorus (POP) contents were measured and compared with the phytoplankton biomass. In the chlorophyll maximum layer, the phytoplankton biomass contributed significantly to the total particulate organic matter (between 55 and 75%). In the nitrate-depleted mixed layer, the results varied according to whether the regression technique [COP=f(chl a)] was used, or the chl a synthesis during the incubation of the samples. With the former technique, the phytoplankton carbon (C p) content appeared minimal, because the y intercept, computed using all the data of the water column, was probably overestimated for this layer. POP would be more associated with living protoplasm than with carbon and nitrogen in the three layers. In the chlorophyll a maximum layer it constitutes a valuable detritus-free biomass measurement, since 80% of the POP consist of phytoplankton phosphorus. The assimilation numbers (NA=μg C μg chl a -1 h-1) were high in all three layers, but the highest values were recorded in the nitrate-depleted mixed layer (NA=15 μg C μg chl a -1 h-1). In the chlorophyll maximum layer, light would be a limiting factor during incubation: between 1025 and 8.1024 quanta m-2 d-1 NA and light are positively correlated independant of nitrate concentration. The growth rates of phytoplankton (μ) were estimated and compared to the maximum expected growth rate. Our main conclusion was that despite very low biomass and nutrient content, the mixed layer was in a highly dynamic state, as evidenced by high rates of phytoplankton growth and short nutrient turnover times (1 d or less for PO-P4 in the mixed layer versus 3 d in the thermocline). The presence of nitrate in the water column allows the development of a higher phytoplankton biomass but does not increase growth rate.  相似文献   

9.
Diel periodicity in cellular chlorophyll content in marine diatoms   总被引:2,自引:0,他引:2  
Owens  T. G.  Falkowski  P. G.  Whitledge  T. E. 《Marine Biology》1980,59(2):71-77
Intracellular chlorophyll a content is one of the many measurable parameters which displays a diel rhythm in marine phytoplankton. In asynchronous laboratory cultures of the diatom Skeletonema costatum, cellular chlorophylls a and c exhibit periodicities which closely follow the light-dark cycle and are not the result of cell division. The laboratory cultures also exhibit diel rhythms in cellular flourescence properties and carbon: chlorophyll a ratios. The occurrence of similar patterns of cellular flourescence, carbon: chlorophyll a ratios, and in situ flourescence in diatom-dominated natural phytoplankton communities suggests the possibility of diel rhythms in cellular chlorophyl a content in diatoms in the sea. The data also suggest that the observed periodicity in cellular chlorophyll content is regulated by the diel light cycle and that the co-occurrence of synchronous or phased cell division would only modify the observed periodicity.This research was performed under the auspices of the United States Department of Energy under Contract No. EY-76-C-02-0016  相似文献   

10.
Chlorophyll content and in situ oxygen production of sands were measured in the lagoon of Takapoto Atoll, Tuamotu Islands (French Polynesia). Stations were spaced from a depth of 17 m to the water limit on the beach. Photosynthetic pigments and net primary production for the top 3 cm of sediment ranged from 56 to 907 mg chlorophyll a m-2 and from 115 to 354 mg O2 m-2 h-1, respectively. Responsible organisms were mostly Foraminifera, among which Amphistegina lessoni, containing unicellular symbionts, dominated. The sands are thus significant contributors to the lagoon's primary production, while the role of phytoplankton is comparatively negligible.  相似文献   

11.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

12.
Diel periodicity of photosynthesis in marine phytoplankton   总被引:3,自引:0,他引:3  
Short-term changes in photosynthesis were documented for 17 of 24 marine phytoplankton species, representing a range of taxonomic groups. Periodicity in phytoplankton photosynthesis on light-dark cycles (diel periodicity) was widespread but not universal for the species studied. The centric diatoms Lauderia borealis, Ditylum brightwellii, Stephanopyxis turris, Coscinodiscus rex, Chaetoceros gracile, and Biddulphia mobiliensis had strong diel periodicity in photosynthetic capacity (P max). Amplitudes of the daily variations ranged from 2.9 to >50, with maxima in the morning or near midday, and with minima during the dark period, and these variations were not dependent on changes in cell pigmentation. There was some evidence for sustained photosynthetic periodicity in constant conditions in several diatoms, and an endogenous rhythm may have been present. The photosynthesis-irradiance (P-I) relationship was time-dependent for representative marine diatoms, with both the initial slope () and the asymptote (P max) of P-I curves exhibiting significant synchronous diel oscillations. Moreover, detailed studies of the amplitude and timing of photosynthetic periodicity for the diatoms L. borealis and D. brightwellii demonstrated large temporal variations in photosynthesis with morning maxima. These P-I oscillations are discussed with reference to models of primary production which use the relationship between photosynthesis and light as a component of predictive equations for phytoplankton growth in the sea.  相似文献   

13.
S. Taguchi 《Marine Biology》1976,37(3):197-207
Harmonic regression analysis has been used to determine the short-term variability in the photosynthetic rate (mgC/mg chlorophyll a/h) of phytoplankton in three inlets of Japan. In natural water without large zooplankton present, the photosynthetic rate [log P=log (100xmgC/mg chlorophyll a/h)] can be expressed as (B+A cos T). Factor B represents the average photosynthetic rate, of which the maximum is usually designated as P max, and Factor A corresponds to the slope of the regression line. The phase of the periodicity, represented by T, is adjusted to give the highest correlation: usually T is expressed as [360/24 x (local time + 4)] in degrees. The correlation between Factors A and B is very high (r=0.95, P<0.001), indicating that Factor A may depend upon Factor B (potential activity of chlorophyll a). Both Factors A and B decrease with decreasing irradiance, but the slope of each regression between Factor A and irradiance varies with season. Continuous darkness reduces the phase of the periodicity to one cycle a day when phytoplankton has multiple cycles of photosynthetic rate per day. Adequate nutrient supply from zooplankton regeneration may cause an increase in Factor B; however, excess density of zooplankton decreases Factor A.  相似文献   

14.
Between July 21 and August 8, 1984, phytoplankton were collected from the surface (2 m) and/or chlorophyll maximum of a neritic front, warm-core eddy 84-E and Wilkinson's Basin in the Northwest Atlantic Ocean and incubated up to 38 h in 200-liter vats. Effects of light intensity and nutrient availability on diel patterns of cell metabolism were analyzed in a 0.6- to 1-m fraction, where Synechococcus spp. represented 80 to 100% of the total photoautotrophs. Populations held under in situ conditions exhibited daytime peaks in photosynthetic potential (Pmax) that were an order of magnitude higher than nighttime Pmax values. Daytime phasing of Pmax peaks had no relationship to asynchronous fluctuations in cellular activities of ribulose 1,5 bisphosphate carboxylase (RUBPCase) or phosphoenol pyruvate carboxylase (PEPCase), or to variations in chlorophyll content. Daytime Pmax peaks were about 12 h out of phase with nighttime maxima in the frequency of dividing cells (FDC). The phase relationship between Pmax and FDC could be altered by manipulating environmental conditions. High light exposure of depp populations did not affect timing of the Pmax peak, but its magnitude increased and coincided with increased RUBPCase activity and chlorophyll photobleaching. In the eddy population, a major shift in the timing of peak Pmax was induced when increased light intensity was accompanied by nutrient enrichment. This change coincided with major increases in cellular chlorophyll and carboxylating enzyme activity. Lowering irradiance and/or increasing nutrient availability elicited different diel pattern in cellular metabolism in surface populations from the eddy and from Wilkinson's Basin that appeared linked to differences in the nutrient status of the cells. Rates of cell division estimated from the percentage of dividing cells in preserved samples were 0.83 divisions d-1 in surface warm-core eddy populations, supporting the view that carbon and nitrogen turnover rates in oligotrophic waters can be sufficient to promote near optimal growth of Synechococcus spp.  相似文献   

15.
Productivity was studied in two diatom species, Chaetoceros armatum T. West and Asterionella socialis Lewin and Norris, which form persistent dense blooms in the surf zone along the Pacific coast of Washington and Oregon, USA. Past observations have shown that surf-diatom standing stock usually declines in summer along with concentrations of nitrate and ammonium. Using the 14C method, photosynthetic rates in natural surf samples were measured monthly for one year (October 1981 through September 1982) at a study site on the Washington coast. Also measured were temperature, salinity, dissolved nutrients, particulate carbon and nitrogen (used as estimates of phytoplankton C and N), and chlorophyll a. Assimilation numbers (P max) were higher in summer (5 to 8 g C g-1 chl a h-1) than in winter (3 to 4gC). Specific carbon incorporation rates (µmax) showed no obvious seasonality, mostly falling within the range of 0.09 to 0.13 g C g-1 C(POC) h-1. The discrepancy between the seasonal trends for chlorophyll-specific and carbon-specific rates reflects a change in the carbon-to-chlorophyll ratio. Because of seasonal differences in daylength and light intensity, daily specific growth rates () are thought to be higher in summer than in winter. Neither ammonium enrichment assays nor particulate carbon-to-nitrogen ratios provided convincing evidence for nitrogen limitation during summer, and the observed changes in diatom abundance cannot be explained on this basis. Both the high diatom concentrations and their seasonal variations probably are due mainly to factors other than growth rates; two factors considered important are diatom flotation and seasonal changes in wind-driven water transport. C. armatum usually dominates the phytoplankton biomass in the surf zone, and evidence suggests that this species is strongly dominant in terms of primary production.Contribution No. 1391 of the School of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

16.
In 1981 two large (1 200 1) seawater samples from the St. Lawrence Estuary were kept under constant temperature and light conditions for periods of 50 and 68 h, respectively. In both tank experiments, semidiurnal variations in NH4 were observed that could be related to cyclical NH4 uptake by the phytoplankton. Semidiurnal cycles in photosynthetic efficiency (B) and intracellular chlorophyll a in the tank, phased on tides at sea, were also evidenced in both experiments. These results support the hypothesis that variations in phytoplankton photosynthetic activity, which are possibly endogenous, can be phased on semidiurnal variations in vertical tidal mixing (variations of the mean light conditions in the mixed layer). In addition, observed variations in intracellular chlorophyll a suggest the possibility of endogenous cycles of phytoplankton light and shade adaptation.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

17.
Observations at sea of large variations in the cellular fluorescence of phytoplankton prompted a study of the fluorescence responses in marine diatoms to light and nutrient stress. When older cultures of Lauderia borealis were exposed to intense light, the in vivo fluorescence of chlorophyll a declined within the first 2 min of exposure. This initial response to light stress appeared to be correlated with a contraction of the chloroplasts. Continued exposure led to a second decline in fluorescence, which required 30 to 60 min for completion. A movement of chloroplasts to the valvar ends of the cell caused this secondary response. Both the contraction and intracellular movement of chloroplasts appeared to be related to both photoinhibition of photosynthesis and diel fluctuations in cellular fluorescence. An investigation of continuous cultures of Cyclotella nana showed that in vivo chlorophyll a fluoresced more strongly in nitrogen-starved cells than in enriched ones. Photoinhibition of cellular fluorescence also increased with the cell's state of nitrogen deficiency.  相似文献   

18.
E. Lopez 《Marine Biology》1979,53(3):201-211
The ultrastructure and pigment content of algal chloroplasts (derived from Bacillariophyceae or Chrysophyceae) are described from 3 benthic species of brackish-water foraminiferans.Elphidium williamsoni Haynes contains 4×106 chloroplasts mg-1, whereas the contents ofNonion germanicum (Ehrenberg) andE. excavatum (Terquem) are about 10% of this value. The two former contain chlorophyllsa andc and fucoxanthin, but these pigments were not detectable in the latter.E. williamsoni andN. germanicum had a net uptake of14C–HCO 3 - , proportional to their content of chlorophyll and number of chloroplasts, increasing linearly up to approximately 10 Klux. At light saturation the former assimilates 2.3x10-3 mg C mg-1 h-1 and the latter only about 20% of this value. Dark uptake was insignificant in all cases. Uptake could not be demonstrated inE. excavatum. The photosynthesis effected by these species is trivial in terms of the total benthic carbon fixation effected by the microflora. The chloroplasts survived longer in forminiferans kept in the dark than in light/dark adapted individuals. To keep a steady state population of chloroplasts under light/dark conditions,E. williamsoni must eat at least 65 chloroplasts individual-1 h-1, whereas the minimum consuption rate inN. germanicum is 20.  相似文献   

19.
Primary production at Antarctic coastal sites is contributed from sea ice algae, phytoplankton and benthic algae. Oxygen microelectrodes were used to estimate sea ice and benthic primary production at several sites around Casey, a coastal area in eastern Antarctica. Maximum oxygen export from sea ice was 0.95 mmol O2 m−2 h−1 (~11.7 mg C m−2 h−1) while from the sediment it was 6.08 mmol O2 m−2 h−1 (~70.8 mg C m−2 h−1). When the ice was present O2 export from the benthos was either low or negative. Sea ice algae assimilation rates were up to 3.77 mg C (mg Chl-a)−1 h−1 while those from the benthos were up to 1.53 mg C (mg Chl-a)−1 h−1. The contribution of the major components of primary productivity was assessed using fluorometric techniques. When the ice was present approximately 55–65% of total daily primary production occurred in the sea ice with the remainder unequally partitioned between the sediment and the water column. When the ice was absent, the benthos contributed nearly 90% of the primary production.  相似文献   

20.
The cellular fluorescence of chlorophyll a in natural phytoplankton was measured during vertical profiling in marine coastal waters. The ratio of in situ fluorescence to chlorophyll a concentration, which was considered as an index of cellular fluorescence, varied over a wide range, with large changes occurring both within the water column and between profiling sites. The variations were caused in part by an inhibition in the fluorescence of cells exposed to intense sunlight. The inhibition, which occurred at irradiances exceeding 0.15 langley (ly)/min, led to diel fluctuations in the fluorescence of those phytoplankton near the sea surface. The remaining variations were independent of changes in temperature, but were unexplained. Both light-dependent and light-independent variations in cellular fluorescence will affect the accuracy of the continuous, fluorometric measurement of in vivo chlorophyll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号