首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
鼠李糖脂洗脱土壤中多氯联苯影响因素的研究   总被引:9,自引:2,他引:7  
研究了由铜绿假单胞菌发酵产生的代表性生物表面活性剂鼠李糖脂(RL)对土壤中PCBs解吸的影响。结果表明,RL的种类与浓度、土壤污染类型、解吸时间、洗脱次数、pH以及离子强度对土壤中PCBs的洗脱有一定的影响,而温度对PCBs的洗脱影响很小。当RL浓度低于CMC时,对PCBs的洗脱没有明显的促进作用;当RL浓度高于CMC后,对PCBs的洗脱有显著的促进作用。具有较低HLB的单鼠李糖脂R2对PCBs的洗脱效果要优于二鼠李糖脂R1。人工污染土壤中PCBs的洗脱效果要高于陈化土壤。污染土壤中TOC的含量越高,PCBs的洗脱率越低。延长解吸时间和增加洗脱次数可增加土壤中PCBs的洗脱率。碱性环境(pH>7)或增加RL溶液中的离子强度均有利于土壤中PCBs的洗脱。  相似文献   

2.
为了研究表面活性剂对p,p'-DDT污染土壤的淋洗效果,选取了4种阴、非离子表面活性剂,对人工p,p'-DDT污染土壤进行单一和复配洗脱实验。结果表明,对于人工p,p'-DDT污染土壤,阴离子表面活性剂洗脱效果优于非离子表面活性剂,其中阴离子表面活性剂十二烷基硫酸钠(SDS)和鼠李糖脂(RL)的洗脱效果较好,添加量为15 000 mg·L~(-1)时洗脱率分别达到44.5%和36.5%,均优于非离子表面活性剂吐温80(TW80)(30.4%)和曲拉通100(TR100)(20.3%);研究还表明非离子表面活性剂在添加量达到10 000 mg·L~(-1)后,继续增加表面活性剂浓度,洗脱效果提升不明显。混合表面活性剂体系中,总添加量为10 000 mg·L~(-1)时,SDS-TW80混合体系对p,p'-DDT的洗脱率为42%,高于SDS-TR100(34.9%)、RLTW80(33.4%)和RL-TR100(37.4%),表面活性剂混合体系对于p,p'-DDT的淋洗有明显的协同作用。  相似文献   

3.
重金属-多氯联苯复合污染土壤同步洗脱   总被引:1,自引:0,他引:1  
电子垃圾拆解区土壤具有重金属与有机物复合污染的特性,尤其以Cu、Pb、Cd和多氯联苯(PCBs)的复合污染较为突出。为了同步脱除土壤中重金属与PCBs,选用增溶物质:Tween 80、TX-100、SDBS、β-环糊精与螯合剂柠檬酸依次组合进行复合污染土壤淋洗实验,应用批量平衡震荡法研究它们对重金属(Cu、Pb、Cd)与PCBs(Aroclor 1254)的洗脱效果。通过比较洗脱效果、环境友好性等方面,得出非离子表面活性剂Tween 80与天然螯合剂柠檬酸2种淋洗剂复合最佳;进一步研究两者的淋洗先后顺序、浓度配比、洗脱时间及淋洗剂p H对污染土壤洗脱效果的影响,结果表明,在Tween 80和柠檬酸均为10 g/L、p H=6、淋洗时间12 h时淋洗效果达到最佳,对Cu、Pb、Cd及PCBs的洗脱率分别达到98.77%、55.92%、66.82%和58.01%。因此,利用Tween80和柠檬酸组合可同时有效去除土壤重金属和PCBs,是复合污染土壤淋洗修复的有效淋洗剂。  相似文献   

4.
研究了表面活性剂羧甲基纤维素钠(carboxyl methyl cellulose,CMC)对土壤中石油污染物的增溶作用。通过批实验,对比研究了CMC和十二烷基苯磺酸钠SDBS 2种表面活性剂的增溶效果,探究了CMC浓度、pH、盐度及回用次数对土壤中石油烃增溶效果的影响。研究结果表明,当CMC浓度为0.5%,增溶时间为24 h时,对TPHs浓度为17 695 mg·kg~(-1)的污染土样,TPHs洗脱率高达60%以上。碱性环境有利于石油烃的洗脱,酸性体系会抑制石油烃的洗脱;增溶作用随盐度的增大而显著增大。在利用CMC对污染土壤进行增溶洗脱时,对于TPHs高浓度污染土壤,可以选择将其洗脱液回用1次或者2次;对于TPHs较低浓度污染土壤,可以选择将其洗脱液回用于较高浓度的污染土壤。  相似文献   

5.
不同洗脱剂对有机氯农药污染场地土壤修复效果比较   总被引:4,自引:1,他引:3  
为了筛选出能有效修复有机氯农药污染土壤的洗脱剂,选取了16种洗脱剂对2种复合有机氯农药(六六六(HCHs)和滴滴涕(DDTs)、氯丹和灭蚁灵)污染场地土壤进行超声洗脱修复。结果表明,对于HCHs和DDTs复合污染土壤,乙酸乙酯和丙酮对HCHs的洗脱率最高,分别为87.6%和87%,其余有机溶剂对其洗脱率也在70%以上。乙酸乙酯和丙酮对于DDT仍为最优,分别为86.9%与78.4%,其余有机试剂对DDT的洗脱率在60%以上。相对于有机溶剂,表面活性剂对HCHs和DDTs复合污染土壤的洗脱效果不好,总洗脱率均低于4%。同样,对于氯丹和灭蚁灵复合污染土壤,有机溶剂的洗脱效果也明显优于表面活性剂。有机溶剂对灭蚁灵的洗脱率,除了正丙醇较低(63.5%)外,其余均在80%左右。对氯丹的洗脱率,除石油醚(59.6%)、正己烷(49.3%)和正丙醇(42%),其余均在70%以上。相同摩尔浓度的表面活性剂中,吐温80对氯丹的洗脱率为54%,环糊精为20%,鼠李糖脂和曲拉通100为13%左右,其余则小于5%,吐温80对灭蚁灵的洗脱率为29.6%,曲拉通100的为12.4%,鼠李糖脂为5.7%,其余则更低。因此,高效低毒的有机试剂,如乙酸乙酯、丙酮和乙醇等可作为有机氯农药污染土壤修复的首选。  相似文献   

6.
表面活性剂淋滤对土壤中邻苯二甲酸酯纵向迁移的影响   总被引:1,自引:0,他引:1  
以无表面活性剂的去离子水为对照、设置1倍(1 CMC)和2倍临界胶束浓度(2 CMC)浓度,研究了单一和混合表面活性剂,包括十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX-100)对人工污染土壤中邻苯二甲酸酯(PAEs)纵向迁移的影响,土柱中上层为PAEs污染土(3 cm),下层为清洁土(20 cm)。CTAB和SDBS在2 CMC时、TX-100为1 CMC时可增强污染土中PAEs的纵向迁移,其中DMP和DEP有无表面活性剂均可发生迁移,在相同表面活性剂条件下,延长老化时间对污染土中PAEs的迁移产生一定的影响。CTAB和SDBS在2 CMC时,清洁土中PAEs总含量较低,但TX-100在1 CMC时较低。清洁土中PAEs总含量均随土层深度的增加而降低。当老化时间较短时,土壤有机质对PAEs在清洁土柱的迁移影响较小,老化时间的延长对清洁土中的PAEs迁移影响较大。3种表面活性剂均可有效促进清洁土中DMP和DEP的迁移,CTAB和SDBS在2 CMC、TX-100在1 CMC时可促进DNBP和BBP的迁移,但3种表面活性剂对清洁土中DNOP迁移的影响较小。与单一表面活性剂相比,混合表面活性剂有助于污染土中PAEs的迁移,且随着浓度的升高,清洁土中PAEs的含量呈现降低的趋势。就整个土柱而言,单一表面活性剂CTAB和SDBS在较高浓度时、TX-100较低的浓度时对PAEs的淋滤效果更好;在较短老化时间下,土壤有机质含量的高低对淋滤率没有显著影响;老化时间延长有效降低了淋滤率;而混合表面活性剂的淋滤率有明显提高,更有助于PAEs的迁移。  相似文献   

7.
表面活性剂冲洗修复多氯联苯污染土壤多相流研究   总被引:3,自引:1,他引:2  
多氯联苯(PCBs)是一种具有持久性、抗生物降解性、脂肪溶性和明显的生物毒性等特性的持久性有机污染物,PCBs在土壤中难于准确定位、难被分解和强烈吸附,去除土壤中PCBs比较困难.表面活性剂冲洗法可以通过提高PCBs溶解度和降低水-PCBs界面张力来实现PCBs从土壤中去除;表面活性剂冲洗PCBs污染土壤涉及气相、水相、NAPLs相和固相等物质,是多相共存并相互发生作用的过程,发生相对渗透率、饱和度和毛细压力的变化;另外,为研究表面活性剂冲洗土壤中PCBs的去除机理,并降低PCBs对研究人员的危害,采用微观孔隙结构网络模型是一种较新颖的和效果显著的研究方法.开展表面活性剂冲洗PCBs污染土壤多相流研究,可以为PCBs污染场地修复提供理论基础和实验支持,并促进我国POPs履约工作的顺利进行.  相似文献   

8.
表面活性剂对焦化污染土壤中多环芳烃淋洗修复研究   总被引:1,自引:0,他引:1  
异位土壤淋洗是一种高效修复污染土壤技术。以孝义市某焦化厂污染土壤为研究对象,采用批处理实验,探究表面活性剂曲拉通-100(TX-100)、吐温80(TW80)、烷基糖苷(APG)作为淋洗剂对土壤中16种多环芳烃(PAHs)的淋洗效果,并以TW80为代表,考察了淋洗剂浓度、淋洗时间、pH以及淋洗方式对污染土壤中PAHs的去除效果。结果表明,TW80、TX-100和APG对土壤中16种PAHs的总去除率分别为25.67%、18.89%和16.77%。TW80作为淋洗剂,3环PAHs的去除率低于高环(3环)PAHs,主要与焦化污染土壤中以3环PAHs为主有关;高环PAHs随着环数的增加,去除率降低。焦化污染土壤中PAHs的去除在240min达到平衡;大部分PAHs去除率随TW80浓度的增加而增大;pH可不作调整;在TW80用量相同情况下,建议采用单次淋洗。  相似文献   

9.
为考察污染土壤淋洗修复过程中表面活性剂的动态吸附解吸过程及其对淋洗效果影响,以北京潮土为例,采用土柱淋洗实验,对4种浓度(600、1 800、3 000和4 200 mg·L~(-1))的阴离子表面活性剂十二烷基苯磺酸钠(SDBS)淋洗柴油污染土壤的过程进行模拟。结果表明,土柱淋洗过程中北京潮土对SDBS的吸附过程可分3个阶段:快吸附阶段、慢吸附阶段及动态平衡阶段。吸附动力学较好地符合颗粒内扩散方程。SDBS淋洗柴油污染潮土时,初期由于表面活性剂在土壤中的吸附未达到平衡而无法在溶液中形成胶束,导致淋洗液中柴油浓度很低。此后SDBS在土壤中的吸附逐渐达到平衡状态,溶液中SDBS的浓度超过临界胶束浓度(CMC)开始形成胶束,土壤中残留的柴油开始大量解吸。淋洗液中柴油浓度总体呈先升到峰值,而后呈锯齿状波动下降的变化规律。淋洗到400 h时,4种浓度SDBS溶液对柴油的去除率分别为1.06%、1.52%、25.55%和27.99%,柴油去除率与表面活性剂浓度呈正相关。但表面活性剂浓度过高时,会降低土柱中土壤渗透系数,导致淋洗流量显著降低,采用SDBS淋洗柴油污染潮土时,表面活性剂浓度在3 000~4 200 mg·L~(-1)较佳。  相似文献   

10.
为探究螯合型表面活性剂N-十二酰基乙二胺三乙酸钠盐(LED3A)应用于重金属-十溴二苯醚(BDE209)复合污染土壤洗脱修复的可行性,采用批平衡振荡实验法,研究LED3A对复合污染土壤中Cu和BDE209的同步洗脱效果,考察洗脱时间、洗脱液浓度、pH等对洗脱率的影响.结果表明:LED3A对Cu单一污染土壤、BDE209...  相似文献   

11.
Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils.  相似文献   

12.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

13.
A soil column adsorption–desorption study was performed on an agricultural calcareous soil to determine the impact of sewage sludge spreading on nickel mobility. Ni adsorption experiments were followed by desorption tests involving the following liquid extractants: water, calcium (100 mg/L), oxalic acid (525 mg/L equivalent to 100 mg carbon/L), and sludge extracts (0.5 and 2.5 g/L). Desorption tests were also conducted after sewage sludge spreading at three application rates (30, 75, and 150 t/ha). According to the breakthrough curve, Ni adsorption was irreversible and occurred mainly through interactions with calcite surface sites. Nickel desorption from the soil column was promoted in presence of significant dissolved organic carbon (DOC) concentration as observed with oxalic acid elution and sludge extract at 2.5 g/L. In sludge-amended soil columns, the maximum Ni levels occurred in first pore volumes, and they were positively correlated to the sludge application rate. The presence of DOC in leaching waters was the main factor controlling Ni desorption from the sludge-amended soil columns. This finding implies that DOC generated by sludge applied on calcareous soils might facilitate the leaching of Ni due to the formation of soluble Ni–organic complexes. Thus, sludge application can have potential environmental impacts in calcareous soils, since it promotes nickel transport by decreasing Ni retention by soil components.  相似文献   

14.
This paper reports about a combined technology for soil remediation from PCBs using the thermal desorption technique coupled with the catalytic hydrogenation of recovered PCBs. The reactor is a bench scale rotating desorption furnace through which nitrogen is flushed and used as carrier gas of desorbed PCBs. The latter are condensed into an hexane or hexane-acetone (1:1 v/v) solution that is then hydrogenated using phosphate-supported Pd or Rh as catalyst. The analysis of the treated soil, under variable operative conditions (temperature and desorption time), shows that the total (99.8%) decontamination from PCBs occurs. The recovery yield of the desorbed PCBs is better than 75% and the subsequent hydrogenation reaches 63% of the collected PCBs in 5h or 100% in 12h.  相似文献   

15.
Earthworms (Dendrobaena veneta) were exposed to heavy metal contaminated soil from a field site under both laboratory and field conditions. In the laboratory study, D. veneta were analysed for Cu after 2 weeks' exposure. The tissue Cu concentration (Cu(W)) increased proportionally with the total extractable soil Cu content (Cu(T)) in soils that contained less than 150 mg Cu kg(-1). In D. veneta exposed to soils containing more than Cu(T) = 150 mg kg(-1), however, we observed no further increase in Cu(W). In a 64-m(2) field plot at a contaminated site, 81 soil samples were taken and analysed for Cu, Pb, Zn and pH. In June 1994, 1000 D. veneta were homogeneously distributed in the plot and sampled after 1, 2 and 5 weeks to analyse for Cu. Additionally, 2000 D. veneta were introduced in September 1994 and sampled after 1, 2 and 4 weeks. At locations where earthworms were removed, the soil Cu content was estimated by disjunctive kriging. Cu concentration factors (ratio of Cu(W) to Cu(T)) in the field experiment were in excellent agreement with those of the laboratory experiment. This indicates that, with a sufficiently high sampling density, it may be feasible to predict earthworm Cu accumulation in the field using a concentration factor determined in the laboratory.  相似文献   

16.
Zhao L  Hou H  Shimoda K  Terada A  Hosomi M 《Chemosphere》2012,88(11):1368-1374
Thermal desorption has attracted considerable interest as a remediation technology for the removal of dioxins and polychlorinated biphenyls (PCBs) from contaminated soils and sediments. Although several research groups have confirmed that polychlorinated dibenzofurans (PCDFs) are formed from PCBs during the thermal desorption of sediments contaminated with PCB, the formation pathways remain poorly understood. Herein, thermal desorption has been used to develop a greater understanding of the formation pathways of PCDFs from sediments contaminated with PCBs. PCB decomposition experiments of sediments contaminated with PCBs were performed over 5 min at 450 °C with a gas composition of 10% O(2)/90% N(2), either in the absence (Run 1) or presence (Run 2-4) of one of three different (13)C(12)-labeled PCB individual standards. The results of Run 1 showed that 99.96% of PCBs and 98.40% of polychlorinated dibenzo-p-dioxins (PCDDs) in the treated sediments had decomposed, whereas the concentration levels of PCDFs had increased by a factor of 31. The addition of different (13)C(12)-labeled PCBs to the sediment sample yielded different (13)C(12)-PCDFs isomer patterns, with formation pathways including loss of ortho-Cl(2), loss of HCl involving a 2,3-chlorine shift, loss of ortho-H(2) and dechlorination.  相似文献   

17.
Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.  相似文献   

18.
Al Nasir F  Batarseh MI 《Chemosphere》2008,72(8):1203-1214
The residues of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated benzenes (CBs) and phenols were investigated for soil, wastewater, groundwater and plants. The uptake concentration of these compounds was comparatively determined using various plant types: Zea mays L., Helianthus annus L., Capsicum annum L., Abelmoschus esculentus L., Solanum melongena L. and Lycopersicon esculentum L. which were grown in a pilot site established at Mutah University wastewater treatment plant, Jordan. Soil, wastewater, groundwater and various plant parts (roots, leaves and fruits) samples were extracted in duplicate, cleaned up by open-column chromatography and analyzed by a multi-residue analytical methods using gas chromatography equipped with either mass selective detector (GC/MS), electron capture detector (GC/ECD), or flame ionization detector (FID). Environmentally relevant concentrations of targeted compounds were detected for wastewater much higher than for groundwater. The overall distribution profiles of PAHs and PCBs appeared similar for groundwater and wastewater indicating common potential pollution sources. The concentrations of PAHs, PCBs and phenols for different soils ranged from 169.34 to 673.20 microg kg(-1), 0.04 to 73.86 microg kg(-1) and 73.83 to 8724.42 microg kg(-1), respectively. However, much lower concentrations were detected for reference soil. CBs were detected in very low concentrations. Furthermore, it was found that different plants have different uptake and translocation behavior. As a consequence, there are some difficulties in evaluating the translocation of PAHs, CBs, PCBs and phenols from soil-roots-plant system. The uptake concentrations of various compounds from soil, in which plants grown, were dependent on plant variety and plant part, and they showed different uptake concentrations. Among the different plant parts, roots were found to be the most contaminated and fruits the least contaminated.  相似文献   

19.
20.
为改善壳聚糖(CTS)的水溶性及对重金属的配位能力,合成水溶性好并能与重金属形成配位作用的水溶性羧甲基壳聚糖(WSCC),研究了WSCC对镉的增溶、解吸行为,考察了pH、离子强度、有机质含量和WSCC初始浓度对镉的解吸影响。结果表明:WSCC对碳酸镉的增溶效果显著,当其质量浓度为2g/L时溶液中Cd2+可达到275mg/L;WSCC对镉解吸能力随着土壤中有机质含量的增加而降低,pH的升高、离子强度的增加和WSCC初始浓度的增加有利于镉的解吸;WSCC对镉污染土壤的解吸更符合准二级动力学方程,该静态解吸研究可以为镉污染土壤的修复提供基础信息及依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号