首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of location specification in recruitment communication by bees has focused on two dimensions: direction and distance from the nest. Yet the third dimension, height above ground, may be significant in the tall and dense forest habitats of stingless bees. Foragers of the stingless bee Scaptotrigona postica recruit to a specific three-dimensional location by laying a scent trail. Stingless bees in the genus Melipona are thought to have a more sophisticated recruitment system that communicates distance through sounds inside the nest and direction through pointing zig-zag flights outside the nest. However, prior research on Melipona has not examined height communication or even established that foragers can recruit newcomers to a specific location. We used identical paired feeders to investigate recruitment to food in M panamica on Barro Colorado Island, Panama. We trained foragers from an observation hive to one feeder and monitored both feeders for the subsequent arrival of newcomers. We changed the relative positions of the feeders to test for correct direction, distance, and canopy-level communication. A 40-m canopy tower located inside the forest enabled us to examine canopy-level communication. We found that M. panamica foragers can recruit to a specific (1) direction, (2) distance, and (3) canopy level. To test the possibility that foragers accomplish this by means of a scent trail, we placed the colony on one shore of a small cove and trained bees over 116 m of open water to a feeder located on the opposite shore. We also placed a second feeder on this shore, equidistant from the colony but 20 m from the first feeder. Significantly more newcomers consistently arrived at the feeder visited by the foragers. Thus foragers evidently do not need a scent trail to communicate direction. Inside the nest, a forager produces pulsed sounds while visibly vibrating her wings after returning from a good food source. She is attended by other bees who cluster and hold their antennae around her, following her as she rapidly spins clockwise and counterclockwise. Locational information may be encoded in this behavior. However, foragers may also directly lead newcomers to the food source. Further experiments are planned to test for such piloting and other communication mechanisms.  相似文献   

2.
This study investigates the recruitment communication mechanisms of a stingless bee, Melipona panamica, whose foragers can evidently communicate the three-dimensional location of a good food source. To determine if the bees communicate location information inside or outside the nest, we conducted removal experiments by training marked foragers to one of two identical feeders and then separating these experienced foragers from potential recruits as they left the nest. The feeders were positioned to test the communication of each dimension. The results show that recruits do not simply follow experienced foragers to the food source. Height and distance are communicated within the nest, while direction is communicated outside the nest. We then examined the pulsed sounds produced by recruiting foragers. While unloading food, recruiting foragers produced several short pulses and one or more very long pulses. On average, the longest unloading pulse per performance was 31–50% longer (P ≤ 0.018) for bees foraging on the forest floor than for bees foraging at the top of the forest canopy (40 m high). While dancing, recruiting foragers produced sound pulses whose duration was positively correlated with the distance to the food source (P < 0.001). Dancing recruiters also produced several short sound pulses followed by one or more long pulses. The longest dance pulse per performance was 291 ± 194 ms for a feeder 25 m from the nest and 1858 ± 923 ms for a feeder 360 m away from the nest. The mechanism of directional communication remains a mystery. However, the direction removal experiment demonstrates that newcomers cannot use forager-deposited scent marks for long-distance orientation (>100 m from the nest). Received: 25 September 1997 / Accepted after revision: 31 May 1998  相似文献   

3.
4.
Information exchange of environmental cues facilitates decision-making processes among members of insect societies. In honeybee foraging, it is unknown how the odor cues of a resource are relayed to inactive nest mates to enable resource exploitation at specific scented sources. It is presumed that bees need to follow the dance or to be involved in trophallaxis with a successful forager to obtain the discovered floral scent. With this in mind, we evaluated the influence of food scent relayed through in-hive interactions and the subsequent food choices. Results obtained from five colonies demonstrated that bees arriving at a feeding area preferred to land at a feeder carrying the odor currently exploited by the trained forager. The bees that landed at this feeder also showed more in-hive encounters with the trained forager than the individuals that landed at the alternative scented feeder. The most frequent interactions before landing at the correct feeder were body contacts with the active forager, a behavior that involves neither dance following nor trophallaxis. In addition, a reasonable proportion of successful newcomers showed no conspicuous interactions with the active forager. Results suggest that different sources of information can be integrated inside the hive to establish an odor-rewarded association useful to direct honeybees to a feeding site. For example, simple contacts with foragers or food exchanges with non-active foragers seem to be enough to choose a feeding site that carries the same scent collected by the focal forager.  相似文献   

5.
Foragers of the stingless bees genus Melipona may produce intranidal sounds that are correlated with food location and quality. In this study, we provide the first detailed analysis of pulsed sounds produced by Melipona panamica foragers while feeding on a carbohydrate food source. We trained foragers to a 2.5-M sucrose feeder under normal, ambient temperature (23–33°C) and lower temperature (11–25°C) conditions. We recorded forager sounds under both conditions and tested the effect of temperature of the thorax, feeder plate, and air on sound temporal characteristics. Forager energetic expenditure and the number of pulses per visit were significantly higher in the cold condition than in the normal condition. Foragers spent a longer time at the feeder under the cold condition than during the normal condition. Interpulse durations were significantly shorter in the cold condition than in the normal condition and became progressively and significantly shorter at the end of each performance. Thus, pulse production increased before departure. Foragers increased their thoracic temperatures above ambient at all experimental air temperatures. Under chilled conditions, foragers had a significantly greater difference between thorax temperature and ambient air temperature than under normal conditions. Foragers must achieve a minimum flight muscle temperature before take-off, and thus forager sounds may be linked to muscle warm-up.  相似文献   

6.
7.
An efficient exploitation of carbohydrate food sources would be beneficial for social wasp species that store nectar within their nest. In the swarm-founding polistine wasp Polybia occidentalis, we now demonstrate that the decisions of when and where to forage are influenced by information from conspecifics. Only when foragers had been trained to collect at artificial carbohydrate feeders did newcomers (food-source-naive individuals) continuously arrive at these feeders during 2 h of experiment. In control tests, in which no forager had been trained, not a single newcomer alighted at any of the offered carbohydrate food sources. This indicates that, during the foraging process, a nest-based input provided by successful foragers must have stimulated nestmates to search for food. Once activated, the newcomers’ choice on where to collect was strongly influenced by field-based social information. The mere visual presence of accumulated conspecifics (wasp dummies placed on one of the feeders) attracted newcomers to the food sources. Interestingly, however, visual enhancement was not the only decision-biasing factor at the feeding site. In an experimental series where searching wasps had to choose between the experimental feeder at which 3 foragers continuously collected and the control feeder with nine wasp dummies, only 40% of the wasps chose the visually enhanced feeder. This points to the existence of additional mechanisms of local enhancement. The possibility that, in social wasps, recruitment is involved in the exploitation of carbohydrate food sources is discussed.  相似文献   

8.
The concept of a suite of foraging behaviors was introduced as a set of traits showing associative directional change as a characterization of adaptive evolution. I report how naturally selected differential sucrose response thresholds directionally affected a suite of honey bee foraging behaviors. Africanized and European honey bees were tested for their proboscis extension response thresholds to ascending sucrose concentrations, reared in common European colonies and, captured returning from their earliest observed foraging flight. Race constrained sucrose response threshold such that Africanized bees had significantly lower sucrose response thresholds. A Cox proportional hazards regression model of honey bee race and sucrose response threshold indicated that Africanized bees were 29% (P<0.01) more at risk to forage over the 30-day experimental period. Sucrose response threshold organized age of first foraging such that each unit decrease in sucrose response threshold increased risk to forage by 14.3% (P<0.0001). Africanized bees were more likely to return as pollen and water foragers than European foragers. Africanized foragers returned with nectar that was significantly less concentrated than European foragers. A comparative analysis of artificial and naturally selected populations with differential sucrose response thresholds and the common suite of directional change in foraging behaviors is discussed. A suite of foraging behaviors changed with a change in sucrose response threshold that appeared as a product of functional ecological adaptation.Communicated by R.F.A. Moritz  相似文献   

9.
We analyzed the foraging and recruitment activity of single foragers ( Apis mellifera), exploiting low reward rates of sucrose solution. Single employed foragers (test bees) were allowed to collect 2.0 m sucrose solution delivered by a rate-feeder located at 160 m from the hive for 2 h. Flow rates varied between 1.4 and 5.5 µl/min. The individual behavior of the test bees was registered both at the hive and the food source, and the social output was calculated as the number of incoming bees arriving at the feeder per hour (henceforth: arrival rate). Incoming bees were captured once they landed at the feeder and assigned to one of three categories according to their foraging experience and hive interactions with the test bee: inspector, reactivated, or inexperienced bees. Both the waggle-runs performed per hour of foraging by test bees and the social output attained, increased with the reward rate. Also the number of hive-stays and the trophallactic-offering contacts performed by test bees were positively correlated with the arrival rate. For the highest reward rates, the duration of Nasonov-gland exposure at the feeding place was higher, and the arrival of most of the incoming bees occurred shortly after the test bee landed at the feeding platform. Thus, in addition to hive-interactions, landing of incoming bees at the food source is promoted by olfactory and/or visual information provided by the test bees. The proportions of inspector, reactivated, and inexperienced bees changed depending on the reward rate offered. Therefore, not only the occurrence and intensity of the recruitment-related behaviors performed by the test bees, but also the stimulation required by each category of incoming bees, determined the social output observed.  相似文献   

10.
In an experimental set-up, a colony of the stingless bee Melipona fasciata demonstrated its ability to choose the better of two nectar sources. This colony pattern was a result of the following individual behavioural decisions: continue foraging, abandon the feeder, restart foraging and initiate foraging. Only very rarely did individuals switch from one feeder to the other. With the first combination of a rich (2.7 M) and a poor (0.8 M) feeder M. fasciata behaved differently from Apis mellifera. Recruitment occurred to both feeders and the poor feeder was not abandoned completely. When the poor feeder was set to 0.4 M, M. fasciata abandoned the poor feeder rapidly and allocated more foragers to the rich feeder. These patterns were similar to those reported for A. mellifera with the first combination of feeders. Over a sequence of 4 days, experienced bees increasingly determined the colony patterns, and the major function of communication between workers became the reactivation of experienced foragers. The foragers modulated their behaviour not only according to the profitability of the feeder, but also according to previous experience with profitability switches. Thus, experience and communication together regulated colony foraging behaviour. These findings and the results of studies with honeybees suggest that M. fasciata and honeybees use similar decision-making mechanisms and only partly different tools. Received: 21 December 1998 / Accepted: 5 January 1999  相似文献   

11.
We examined whether the quality (concentration) of incoming sucrose solutions returned by foraging honey bees affected the response thresholds of pre-foraging members of the colony. Six pairs of colonies were given ad libitum access to sucrose solution feeders. A colony from each pair was switched from 20–50% sugar concentration feeders while the other continued to have access to 20% sucrose feeders. Proboscis extension response (PER) scores to an increasing series of sucrose concentrations were significantly higher in pre-foragers of colonies foraging on 20% sucrose throughout compared to pre-foragers in colonies where foraging was switched to 50% sucrose. Although all colonies had honey stores, the concentration of sugar solution in non-foraging bees crops were significantly lower in bees from colonies foraging on 20% sucrose compared to those from colonies foraging on 50% sucrose. Because response thresholds to sugar of young bees were modulated by the concentration of sucrose solution returned to colonies, we repeated the 2000 study of Pankiw and Page that potentially confounded baseline response thresholds with modulated scores due to experience in the colony. Here, we examined PER scores to sucrose in bees within 6 h of emergence, prior to feeding experience, and their forage choice 2 to 3 weeks later. Pollen foragers had higher PER scores as newly emerged bees compared to bees that eventually became nectar foragers. These results confirm those of the 2000 study by Pankiw and Page. Combined, these experiments demonstrate that variation in pre-forager sucrose response thresholds are established prior to emerging as adults but may be modulated by incoming resources later on. Whether this modulation has long-term effects on foraging behavior is unknown but modulation has short-term effects and the potential to act as a means of communication among all bees in the colony.Communicated by M. Giurfa  相似文献   

12.
13.
Since forager honeybees change their food-unloading behavior according to nectar-source profitability, an experiment was performed in order to analyze whether food-receivers modify their within-hive tasks related to different reward conditions. We offered individual foragers two reward conditions at a rate feeder while an additional feeder offered a constant reward and was of free access to the rest of the hive. Both feeders were the only food sources exploited by the colony during the assays since a flight chamber was used. After receiving nectar, hive bees performed processing cycles that involved several behaviors and concluded when they returned to the delivery area to receive a new food sample. During these cycles, receivers mainly performed oral contacts offering food, or inspected cells, and often both. In the latter case, both behaviors occurred simultaneously and at the same distance from the hive entrance. When they performed a single task, either the occurrence of cell inspections increased or contact offerings decreased for the highest reward rate offered to the donor-forager. Receivers also begged for food more often after interacting with low-profit foragers. Thus, the profitability of the food source exploited by nectar-forager honeybees could affect receiver behaviors within the hives based on individual-to-individual interactions.Communicated by R.F.A. Moritz  相似文献   

14.
Foragers of several species of stingless bees deposit pheromone spots in the vegetation to guide recruited nestmates to a rich food source. Recent studies have shown that Trigona and Scaptotrigona workers secrete these pheromones from their labial glands. An earlier report stated that species within the genus Geotrigona use citral from their mandibular glands for scent marking. Since convincing experimental proof for this conjecture is lacking, we studied the glandular origin of the trail pheromone of Geotrigona mombuca. In field bioassays, newly recruited bees were diverted by artificial scent trails that branched off from the natural scent trail deposited by their nestmates only when they were baited with extracts from the foragers’ labial glands. Compounds extracted from the mandibular glands, however, did not release trail following behavior. This demonstrates that the trail pheromone of G. mombuca is produced in the labial glands, as in Trigona and Scaptotrigona. Furthermore, in chemical analyses citral was identified exclusively in the foragers’ mandibular glands, which disproves its supposed role as a trail pheromone. The labial glands contained a series of terpene- and wax type esters, with farnesyl butanoate as major constituent. We, therefore, postulate that the trail pheromone of G. mombuca is composed of a blend of esters.  相似文献   

15.
Food quality is a relevant characteristic to be transferred within eusocial insect colonies because its evaluation improves the collective foraging efficiency. In honeybees, colony mates could directly acquire this resource characteristic during trophallactic encounters with nectar foragers. In the present study, we focused on the gustatory responsiveness of bees that have unloaded food from incoming foragers. The sugar sensitivity of receiver bees was assessed in the laboratory by using the proboscis extension response paradigm. After unloading, hive bees were captured either from a colony that foraged freely in the environmental surroundings or from a colony that foraged at an artificial feeder with a known sucrose solution. In the first situation, the sugar sensitivity of the hive bees negatively correlated with the sugar concentration of the nectar crops brought back by forager mates. Similarly, in the controlled situation, the highest sucrose concentration the receivers accepted during trophallaxis corresponded to the highest thresholds to sucrose. The results indicate that first-order receivers modify their sugar sensitivity according to the quality of the food previously transferred through trophallaxis by the incoming foragers. In addition, trophallaxis is a mechanism capable of transferring gustatory information in honeybees. Its implications at a social scale might involve changes in the social information as well as in nectar distribution within the colony.  相似文献   

16.
Effects of colony food shortage on behavioral development in honey bees   总被引:1,自引:0,他引:1  
Three experiments were conducted to explore the effects of severe food shortage on the control of two important and interrelated aspects of temporal division of labor in colonies of the honey bee (Apis mellifera): the size and age distribution of a colony's foraging force. The experiments were conducted with single-cohort colonies, composed entirely of young bees, allowing us to quickly distinguish the development of new (precocious) foragers from increases in activity of bees already competent to forage. In experiment 1, colony food shortage caused an acceleration of behavioral development; a significantly greater proportion of bees from starved colonies than from fed colonies became precocious foragers, and at significantly younger ages. Temporal aspects of this starvation effect were further explored in experiment 2 by feeding colonies that we initially starved, and starving colonies that we initially fed. There was a significant decrease in the number of new foragers in starved colonies that were fed, detected 1 day after feeding. There also was a significant increase in the number of new foragers in fed colonies that were starved, but only after a 2-day lag. These results suggest that colony nutritional status does affect long-term behavioral development, rather than only modulate the activity of bees already competent to forage. In experiment 3, we uncoupled the nutritional status of a colony from that of the individual colony members. The behavior of fed individuals in starved colonies was indistinguishable from that of bees in fed colonies, but significantly different from that of bees in starved colonies, in terms of both the number and age distribution of foragers. These results demonstrate that effects of starvation on temporal polyethism are not mediated by the most obvious possible worker-nest interaction: a direct interaction with colony food stores. This is consistent with previous findings suggesting the importance of worker-worker interactions in the regulation of temporal polyethism in honey bees as well as other social insects. Received: 17 April 1997 / Accepted after revision: 26 December 1997  相似文献   

17.
Foraging bumblebees scent mark flowers with hydrocarbon secretions. Several studies have found these scent marks act as a repellent to bee foragers. This was thought to minimize the risk of visiting recently depleted flowers. Some studies, however, have found a reverse, attractive effect of scent marks left on flowers. Do bees mark flowers with different scents, or could the same scent be interpreted differently depending on the bees’ previous experience with reward levels in flowers? We use a simple experimental design to investigate if the scent marks can become attractive when bees forage on artificial flowers that remain rewarding upon the bees’ return after having depleted them. We contrast this with bees trained in the more natural scenario where revisits to recently emptied flowers are unrewarding. The bees’ association between scent mark and reward value was tested with flowers scent marked from the same source. We find that the bees’ experience with the level of reward determines how the scent mark is interpreted: the same scent can act as both an attractant and a repellent. How experience and learning influence the interpretation of the meaning of chemical signals deposited by animals for communication has rarely been investigated.  相似文献   

18.
Colony energy requirements affect the foraging currency of bumble bees   总被引:1,自引:0,他引:1  
Summary This study examines whether the foraging behavior of worker bumble bees (Bombus: Apidae) collecting nectar on inflorescences of seablush (Plectritis congesta: Valerianaceae) is affected by colony energetic requirements, which were experimentally manipulated either by adding sucrose solution to honey pots or by removing virtually all available nectar from the pots. The competing hypotheses tested were: (1) no change; energetic requirements do not affect behavior, since there is a single best way to collect food in a given environment; (2) energetic currency; the energetic currency maximized by foragers changes according to colony energetic condition, with nectar-depletion causing a shift from maximizing long-term productivity to maximizing immediate energetic gain, thereby de-emphasizing energetic costs; and (3) predation; foragers devalue risk of predation as risk of starvation increaes, with colony nectar-depletion causing foragers to be less predation riskaverse in order to increase immediate energetic gain. Relative to when their colony energy reserves were enhanced, foragers from nectar-depleted colonies selected smaller inflorescences, visited fewer flowers per inflorescence, probed flowers at a higher rate while on each inflorescence, and walked between inflorescences less often, thereby spending a greater proportion of their foraging trip in flight. These behaviors increased a bee's energetic costs while foraging, and should also have increased its immediate energetic gains, allowing rejection of the no change hypothesis. Predictions of the predation hypothesis were generally not supported, and our results best support the energetic currency hypothesis. Foraging currency of bumble bees therefore appears to be a function of colony energetic state. Offprint requests to: R.V. Cartar  相似文献   

19.
Memory dynamics and foraging strategies of honeybees   总被引:6,自引:0,他引:6  
Summary The foraging behavior of a single bee in a patch of four electronic flower dummies (feeders) was studied with the aim of analyzing the informational components in the choice process. In different experimental combinations of reward rates, color marks, odors and distances of the feeders, the behavior of the test bee was monitored by a computer in real time by several devices installed in each feeder. The test bee optimizes by partially matching its choice behavior to the reward rates of the feeders. The matching behavior differs strongly between stay flights (the bee chooses the feeder just visited) and shift flights (the bee chooses one of the three alternative feeders). The probability of stay and shift flights depends on the reward sequence and on the time interval between successive visits. Since functions describing the rising probability of stay flights with rising amounts of sucrose solution just experienced differ for the four feeders, it is concluded that bees develop feeder-specific memories. The choice profiles of shift flights between the three alternative feeders depend on the mean reward rate of the feeder last visited. Good matching is found after visits to the low-reward feeders and poor matching following departure from the high-reward feeders. These results indicate that bees use two different kinds of memories to guide their choice behavior: a transient short-term working memory that is not feeder-specific, and a feeder-specific long-term reference memory. Model calculations were carried out to test this hypothesis. The model was based on a learning rule (the difference rule) developed by Rescorla and Wagner (1972), which was extended to the two forms of memories to predict this operant behavior. The experiments show that a foraging honeybee learns the properties of a food source (its signals and rewards) so effectively that specific expectations guide the choice behavior. Correspondence to: R. Menzel  相似文献   

20.
Dancing and trophallactic behaviour of forager honey bees, Apis mellifera ligustica >Spinola, that returned from an automatic feeder with a regulated flow rate of 50% weight-to-weight sucrose solution (range: 0.76–7.65 μl/min) were studied in an observation hive. Behavioural parameters of dancing, such as probability, duration and dance tempo, increased with the nectar flow rate, though with very different response curves among bees. For trophallaxis (i.e. mouth-to-mouth exchange of food), the frequency of giving-contacts and the transfer rate of the nectar increased with the nectar flow rate. After unloading, foragers often approached other nest mates and begged for food before returning to the food source. This behaviour was less frequent at higher nectar flow rates. These results show that the profitability of a food source in terms of nectar flow rate had a quantitative representation in the hive through quantitative changes in trophallactic and dancing behaviour. The role of trophallaxis as a communication channel during recruitment is discussed. Received: 14 January 1995/Accepted after revision: 14 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号