首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increased cost associated with the waste removal and disposal of conventional agricultural plastic in contact with the soil combined with the gradually decreasing cost of the biodegradable plastics allowed the commercialization of biodegradable mulching films. Since the conventional thin wall or tape drip irrigation system lies under the mulching film and is used for one season only, it would be desirable to replace it with a biodegradable one. This paper presents the results of a research work investigating the possibilities and limitations in developing biodegradable drip irrigation thin wall pipes and pipes. The first ever experimental biodegradable drip irrigation thin wall pipes were produced. Rigid pipes were also produced for experimental purposes. Manufacturing problems were encountered in the processing of the biodegradable drippers and irrigation thin wall pipes with the experimental materials due to the complex formulation of the raw materials and the fact that the machinery used was specifically designed for PE processing. Experimental biodegradable thin wall pipes made of Bioflex with embedded drippers made of Mater-Bi were produced. The processing problems encountered with the production of thin wall pipes were surpassed during the experimental production of rigid type irrigation pipes. A biodegradable rigid irrigation pipe made of a grade of Mater-Bi, with embedded cylindrical drippers made of another grade of Mater-Bi was produced successfully. A better understanding of the thermal profile of the biodegradable raw materials and the use of processing equipment adapted to this profile might allow in the future the manufacturing of thin wall drip irrigation pipes for agricultural applications, and the use of alternative biodegradable materials.  相似文献   

2.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

3.
Thin films of gelatin were prepared by casting. Then the films were photocured and the mechanical properties were studied. The tensile strength of UV cured gelatin films showed about 10% enhancement than that of raw gelatin films. Minor amount of urea (1–5%) was used as additive in aqueous gelatin solution and films were prepared using same technique. Four formulations were prepared in methanol with 2-ethylhexyl acrylate in the presence of photoinitiator (darocur-1664). The films were soaked in the prepared formulations and then cured under UV radiation at different intensities (5–25 passes). Percentage of urea, monomer concentration, soaking time and radiation intensities were optimized with the extent of polymer loading, TS and elongation at break of the photocured film. The films containing 2% urea, cured with 3% EHA for 3 min at 15th UV pass showed the highest mechanical properties. A significant improvement of TS (31%) occurred when EHA (3%) was incorporated.  相似文献   

4.

Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation by solvent casting method, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77?×?10??8 g m??1 s??1 Pa??1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.

  相似文献   

5.
The overall mechanical behaviour of a series of experimental Mater-Bi made thin low-tunnel films is analysed with respect to the effect of two major factors: the film processing optimisation during manufacturing and the design of the low-tunnels structural system. The analysis of the mechanical behaviour of the biodegradable low-tunnel films, based on the results of extensive full-scale and small-scale experiments, combined with laboratory testing of the mechanical properties of the film, proves that a rather good mechanical behaviour is possible for these films, comparable to the behaviour of conventional agricultural films in terms of strength, provided that two criteria are met: (a) the low tunnel structural design is based on the initial stress at yield value of the film, which represents the asymptotic value of the tensile strength of the film, following its evolution with the time of exposure to real field conditions; (b) the processing of the film is optimised for the particular biodegradable material and film thickness under consideration. It is also confirmed that the stabilisation schemes used with conventional polyethylene films are not suitable for the biodegradable films.
D. BriassoulisEmail: Phone: +30-210-529-4011Fax: +30-210-529-4023
  相似文献   

6.
In this work, a major fatty acid from coconut oil was used as starting material in preparing biodegradable polymers. Thus, polyesters and polyamides from varying proportions of monomers, hydroxy- and amino- derivatives of lauric acid were synthesized. Initially, the derivatives were prepared by regioselective chlorination of lauric acid, in the presence of ferrous ions in strong acid medium. Subsequent hydroxylation and amination procedures yielded the hydroxy- and amino- derivatives of lauric acid. These monomers were polymerized in a reaction tube by simple polycondensation method at 220–230 °C for 6–8 h without catalyst. Molecular weight determination using –COOH by end group titration and gel permeation chromatography (GPC) gave an average molar mass of 3,000–5,000 g mol−1 with n = 15–25 monomer units. Thermal properties such as glass transition (Tg) and decomposition (Td) temperatures were obtained using differential scanning calorimetry (DSC). The same processes of synthesis and determinations above were applied to coconut fatty acids, derived from saponification of coconut oil, and resulted to very similar conclusions. A quick biodegradation assay against fungus Aspergillus niger UPCC 4219 showed that the polymers prepared are more biodegradable than conventional plastics such as polypropylene, poly(ethyleneterepthalate) and poly(tetrafluoroethylene) but not as biodegradable as cellulosic (newsprint) paper.  相似文献   

7.
Experimental investigations were carried out to investigate the effect of thermo-chemical exposures on the hydraulic performance of Compacted Clay Liners (CCLs) in landfills. Hydraulic conductivity of most CCL specimens was increased by two to three times their initial values when exposed to 55 °C for 75 days. CCL specimens also experienced increases in their hydraulic conductivities when exposed to leachate at room temperature. This behaviour could be due to the decrease in viscosity when the permeant was changed from tap water to leachate. However, as the leachate exposure time exceeded the first 15 days, hydraulic conductivity readings decreased to as much as one order of magnitude after 75 days of leachate permeation at room temperature. The gradual decrease in the CCLs hydraulic conductivities was most likely due to chemical precipitation and clogging of pore voids within the soils which seemed to reduce the effective pore volume. The rate of hydraulic conductivity reduction due to leachate permeation was slower at higher temperatures, which was attributed to the lower permeant viscosity and lower clogging occurrence. The observed hydraulic behaviours were correlated to the physical, mineral, and chemical properties of the CCLs and described below.  相似文献   

8.
There is great interest in developing eco-friendly green biocomposites from plant-derived natural fibers and crop-derived bioplastics attributable to their renewable resource-based origin and biodegradable nature. Fully biodegradable composites, made from both biodegradable polymeric matrices and natural fibers, should be advantageous in some applications, such as one way packaging. Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers produced from a wide range of microorganisms, with poly(3-hydroxybutyrate) P(3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) being important examples of PHAs. In this work, biocomposites of PHBV consisting of a PHBV matrix incorporating peach palm particles (PPp), [i.e., 100/0, 90/10, 80/20 and 75/25 (%w/w) PHBV/PPp] were processed by injection molding at 160 °C. The effect of PPp loading on the thermal and the mechanical properties, as well as on the morphological behavior of the PHBV/PPp biocomposites was investigated. Soil biodegradation tests were carried out by burying specimen beakers containing aged soil and kept under controlled temperature and humidity in accordance with ASTM G160-98. Degradation of the biocomposites was evaluated by visual analysis, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) following test exposures of up to 5 months. The addition of PPp reduced the maximum strength and the elongation at break of the biocomposites. On the other hand, the Young’s modulus improved with the PPp content. Micrographs of the fracture surfaces following tensile strength testing revealed a large distance between the PHBV matrix and PPp particles although a low interaction is expected. Where measured, these distances tended increase as the PPp content of the biocomposites increased. Soil biodegradation tests indicated that the biocomposites degraded faster than the neat polymer due to the presence of cavities that resulted from introduction of the PPp and that degradation increased with increasing PPp content. These voids allowed for enhanced water adsorption and greater internal access to the soil-borne degrader microorganisms.  相似文献   

9.
Shellac (SL) films were prepared by casting and were grafted with various acrylic monomers of different functionalities using gamma radiation. Different formulations of shellac with varying concentrations (3, 5 and 7%) of these acrylic monomers such as 2-hydroxyethyl methacrylate (HEMA), 2-ethylhexyl acrylate (EHA) and 1,4-butanediol diacrylate (BDDA) in methanol were prepared. The pure shellac and other treated films were then irradiated under gamma radiation (Co-60) at different doses (0.5–5 kGy) at a dose rate of 3.5 kGy/h where 1 Gy = 1 J/kg = 100 rads. The mechanical properties like tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. The mechanical properties of the irradiated shellac films demonstrated superior values. Among the formulations, shellac grafted with BDDA (SL-g-BDDA) showed the highest TS and Eb values which were 543 and 168% higher than those of raw shellac films, respectively. The water uptake behavior of raw and treated films was also studied. The raw film showed 11% water uptake but HEMA containing film showed 67%. In the soil burial test, HEMA containing shellac film was rapidly degraded than other raw, EHA and BDDA grafted films. Thermal properties indicated that grafting of acrylic monomers decreased the melting temperature of the pure shellac films.  相似文献   

10.
To develop a high performance environment friendly material, highly branched polyester/clay nanocomposites have been prepared from Mesua ferrea Linn seed oil-based polyester resin and hydrophilic bentonite nanoclay. The prepared nanocomposites were characterized by Fourier transform infra-red spectroscopy, X-ray diffractometer, scanning electron microscope, transmission electron microscope and rheological studies. Partial exfoliation of clay layers by the polymer chains with good interfacial interactions was observed in the nanocomposites. The formation of delaminated nanocomposites was manifested through the enhancement of tensile strength, scratch hardness, chemical resistance, impact resistance, thermostability, etc. The results show enhancement of three times in tensile strength and 18 °C in thermostability by inclusion of 5 wt% nanoclay as compared to the pristine polymer. By the influence of 5 wt% nanoclay four times enhancement in elongation at break as compared to the pristine polymer was noticed. Thus these nanocomposites have the potential to be used in many advanced applications.  相似文献   

11.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

12.
With growing interest in the use of eco-friendly composite materials, biodegradable polymers and composites from renewable resources are gaining popularity for use in commercial applications. However, the long-term performance of these composites and the effect of compatibilization on their weathering characteristics are unknown. In this study, five types of biodegradable biopolymer/wood fiber (WF) composites were compatibilized with maleic anhydride (MA), and the effect of accelerated UV weathering on their performance was evaluated against composites without MA and neat biopolymers. The composite samples were prepared with 30 wt% wood fiber and one of the five biodegradable biobased polymer: poly(lactic) acid (PLA), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Bioflex (PLA blend), or Solanyl (starch based). Neat and composite samples were UV weathered for 2000 h (hours), and characterized for morphological, physical, thermal, and mechanical properties before and after weathering. Compared to composites without MA, composites containing MA grafted polymers exhibited improved properties due to increased interfacial adhesion between the fiber and matrix. Upon accelerated weathering, thermal and mechanical properties of 70% of the samples substantially decreased. Surfaces of all the samples were roughened, and drastic color changes were observed. Water absorption of all the samples increased after weathering exposure. Even though the compatibilization is shown to improve composite properties before weathering, it did not affect weathering of samples, as there were no considerable differences in properties exhibited by the composites with MA and without MA after weathering. The results suggest that compatibilization improves properties of biodegradable biobased composites without affecting its UV degradation properties.  相似文献   

13.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

14.
The effect of multiple injection-moulding reprocessing of three biodegradable matrices on their mechanical properties, melt flow rate, molecular weight, phase transition temperatures and degradation temperature is presented. It has been found that, with successive reprocessing, tensile, flexural and impact strength decreased. Drop in mechanical properties has been assigned to degradation of the matrices, as corroborated by melt flow and molecular weight analysis. Although reprocessing did not significantly affect the glass transition, it diminished the melting point and degradation temperature of polymers. Results indicate that neat PLLA can be recycled for up to five times without suffering a drastic loss in mechanical and thermal properties. The aliphatic polyester Mater-Bi TF01U/095R can be recycled for up to 10 times, whilst starch-based Mater-Bi YI014U/C wastes should be destined to composting, since its recyclability is very poor. The effect of reprocessing on composites reinforced with chemithermomechanical pulp (CTMP) followed the tendencies observed for the neat matrices. Whilst CTMP-fibres behave mainly as filler in PLLA composites, reinforced thermoplastic starch-based composites presented enhanced mechanical properties and recyclability.  相似文献   

15.
Copolyesters of aliphatic monomers with a defined amount of terephthalic acid recently have been shown to be biodegradable. This group of plastic materials exhibits very interesting material properties with regard to their technical application potential. A tensile strength of 25 N/mm2 combined with elongations at break up to 1500% was achieved for BTA materials. Melting points varied from 80 to 140‡C. Biodegradation rate under compositing conditions were determined, showing typical erosion rates of films, in the range of 5 to 10 Μm/week. The material properties and the degradation rate as well can be adjusted by the copolymer composition. Stretching of the polymer in the cold state leads to 10-fold higher mechanical strength of the material. The polyester chain can be extended to high molar masses, resulting in melt viscosities suitable, e.g., for melt below extrusion.  相似文献   

16.
Reactive Blending of Biodegradable Polymers: PLA and Starch   总被引:11,自引:0,他引:11  
Poly(lactic acid) (PLA) and starch are important biodegradable polymers. Mechanical properties of blends of PLA and starch using conventional processes were very poor because of incompatibility. In this study, PLA and starch were blended with a reactive agent during the extrusion process. The affects of the reactive blending were investigated and significant improvements were confirmed by measuring the tensile strength and elongation at break, IR spectra, and DSC.  相似文献   

17.
Biodegradable polymers are the need of the day. Due to their natural spontaneous degradation such materials are becoming the subject of intensive research. Poly(5-hydroxylevulinic acid) (PHLA) is a biodegradable polymer obtained from biomass resources. In the present study, one dimensional isolated chain model is used for quantitative characterization of FTIR spectra by vibrational dynamics giving potential energy distribution and dispersion curves for PHLA. The predicted values of heat capacity calculated in the range 10–500 K, via density-of-states are being reported.  相似文献   

18.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

19.
Polyhydroxybutyrate-co-hydroxyvalerate microspheres (PHBV-MS) were prepared as a delivery system for the herbicide atrazine (ATZ). Characterization of the system included investigation of in vitro release properties and genotoxicity. ATZ − PHBV-MS particle diameters showed a size distribution range of 1–13 μm. Differential scanning calorimetry analyses indicated that ATZ was associated with the PHBV microparticles. The release profiles showed a different release behavior for the pure herbicide in solution, as compared with that containing ATZ-loaded PHBV-MS. Korsmeyer–Peppas model analyses showed that atrazine release from the microparticles occurred by a combination of diffusion through the matrix and partial diffusion through water-filled pores of the PHBV microparticles. A Lactuca sativa test result showed that the genotoxicity of ATZ-loaded PHBV-MP was decreased in relation to ATZ alone. The results demonstrate a viable biodegradable herbicide release system using atrazine for agrochemical purposes.  相似文献   

20.
Soy protein plastics are a renewable, biodegradable alternative to fossil fuel-based plastic resins. Processing of soy protein plastics using conventional methods (injection molding, extrusion) has met with some success. Viscosities of processable formulations that contain soy protein along with the necessary additives, such as glycerol and cornstarch, have not been reported, but are necessary for extrusion modeling and the design of extrusion dies. Resins consisting of soy protein isolate-cornstarch ratios of 4:1, 3:2, and 2:3 were plasticized with glycerol and soy oil, compounded in a twin screw extruder and adjusted to 10% moisture. The effects on viscosity of added sodium sulfite, a titanate coupling agent and recycling were evaluated using a screw-driven capillary rheometer at shear rates of 100–800/s. The viscosities fit a power-law model and were found to be shear thinning with power-law indices, n, of 0.18–0.46 and consistency indices, m, of 1.1 × 104–1.0 × 105. Power-law indices decreased and consistency indices increased with increasing soy protein-to-cornstarch ratio and in the absence of sodium sulfite. Addition of the titanate coupling agent resulted in increased power-law index and decreased consistency index. Viscosities at a shear rate of 400/s decreased with recycling, except for the 4:1 soy protein isolate to cornstarch formulation, which displayed evidence of wall slip. Power-law indices were unaffected by recycling. Viscosities in the tested shear rate range were comparable to polystyrene and low-density polyethylene indicating soy protein plastics are potential drop-in replacements for commodity resins on conventional plastics processing equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号