首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste.  相似文献   

2.
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.  相似文献   

3.
The possibility of using incinerator bottom ash as a substitute for natural aggregates was investigated. Rough, porous surface of bottom ash, which diminishes the strength of solidified products, was improved by colloidal silica solution. As a result, a significant increase of mechanical strength was accomplished by a slight amount of silica (<1 wt% to total). Moreover, pozzolanic reaction was induced in initial cement hydration due to the nano-particle size of about 20 nm in colloidal silica solution. Cylindrical specimens and bricks were prepared from bottom ash added to a colloidal silica (SiO2) solution and cement, and then their compressive strengths were evaluated. Cylindrical specimens showed an increase of approximately 60% in compressive strength when colloidal solution containing 4 wt% silica particles was sprayed onto the bottom ash. The strength of bricks containing colloidal silica was in excess of 20 MPa, which meets the requirement of construction materials. Results of leaching tests based on Toxicity Characteristic Leaching Procedure (TCLP) proved that the solidified bottom ash possessed good chemical stability.  相似文献   

4.
The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.  相似文献   

5.
The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C(m)) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0~3.0 and firing the raw mixes at 1250 °C for 2h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.  相似文献   

6.
This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment.The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range.In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.  相似文献   

7.
The leaching of lead from cement-based solidified waste forms mixed at different water/cement ratios was studied by conducting equilibrium and semi-dynamic leaching tests using deionized water and sodium chloride solutions. The results suggest that leaching of the primary constituents of the cement (calcium, silicon and sulfate) is controlled by solubility equilibria, with increased leaching into chloride solutions due to ionic strength effects. The original porosity of the waste forms increased with water/cement ratio and chloride solutions further increased it as a result of decalcification. Lead leaching was generally low, and appears to be a transport-controlled process, such that leaching correlates positively with porosity.  相似文献   

8.
This paper discusses the stabilisation/solidification process with Portland cement applied to municipal solid waste incineration residues. Two types of residues were considered: fly ash (FA) produced in an electrostatic precipitator, and air pollution control (APC) residues from a semi-dry scrubber process. Cement pastes with different percentages of FA and APC residues were characterised according to their physical properties, the effect of the hydration products and their leaching behaviour. Portland pastes prepared with APC residues showed a rapid setting velocity in comparison with setting time for those pastes substituted with FA residues. Portland cement hydration was retarded in FA pastes. Leaching test results showed that heavy metals (such as Zn, Pb and Cd) and sulphates are immobilised within the paste, whereas chlorides are only partially retained. The carbonation process increases the leachability of S04(2-) and heavy metals such as Zn and Cr.  相似文献   

9.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulating cement hydration after precipitation of metal salts on the surface of cement grains. A cement hydration model was extended in order to describe pore water composition and the effects of cement grain coating. Calculations were made and the strength development predicted by the model was found to agree qualitatively with experimental results found in literature. The complete model is useful in predicting the strength and leaching resistance of solidified products and developing solidification recipes based on cement.  相似文献   

10.
One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.  相似文献   

11.
Ordinary Portland cement blended with blast furnace slag and pulverised fuel ash was used to solidify two industrial wastes containing large amounts of metals. The solidified mixes were carbonated using an accelerated regime previously established and compared for strength development, leaching characteristics and phase development against their non-carbonated analogues. A significant difference in the immobilisation of metals such as Zn, Ni and As was recorded for samples in which carbonation was optimised. The work has shown that by controlling mix parameters it is possible to improve the immobilisation of specific metals. Electron microanalysis showed that this is partly due to the precipitation of calcite in the solidified waste pore structure. Carbonation was also found to accelerate C3S hydration in all carbonated samples and to modify the morphology of residual cement grains through the formation of a calcite coating over de-calcified hydration rims. Some metals appear to be incorporated in both of these zones.  相似文献   

12.
The process of solidification with water was studied on air pollution control (APC) residues from incineration of refuse-derived fuel (RDF) regarding mechanical strength and leaching behaviour of solidified material. Factorial design in two levels was applied to investigate the impact of water addition, time, and temperature to mechanical strength of solidified material. Factors time and temperature, as well as the interaction between the addition of water and time significantly (alpha=0.05) influenced the mechanical strength of solidified material. The diffusion-leaching test NEN 7345 was performed to investigate if the leaching behaviour of elements from solidified material was determined by diffusion. Since it was found that leaching is not diffusion controlled, the long-term leaching behaviour was not assessed. However, the investigation showed that some of the studied components (Al, Hg, Mn, Pb, Si, and Zn) could be considerably demobilised by solidification with water. Concentrations of As, Cd, Co, Cu, Fe, and Ni were either below or not quite above the detection limits to be included in the analysis of leaching behaviour. The elements least demobilised by solidification were Cl, Cr, K, and Na.  相似文献   

13.
The reuse of waste materials requires the development of assessment methods for the long-term release of pollutants (source term) from wastes (or materials containing wastes) in contact with water. These methods depend on the scenario conditions: characteristics of the materials (especially physical structure and composition), contact with water. The scenario studied here is a water storage reservoir for fire fighting. The reservoir construction is made of a mixture of hydraulic binders and air pollution control (APC) residues from a municipal solid waste incinerator (MSWI). The modelling of the source term is performed in 5 steps ranging from the physico-chemical characterisation of the material to the validation of the proposed model by means of field simulation devices. This article presents the first steps of the methodology: physico-chemical characterisation of the source term, identification of the main transfer mechanisms and laboratory scale modelling of the source term. During the physico-chemical characterisation, it has been shown that the solidified waste shows a high basic capacity and that a relative decrease in pH during leaching favours retention of the main pollutants. During the first leaching sequences, the dynamic leaching tests show that the release of pollutants such as cadmium, arsenic, zinc and lead is extremely low but that the release of alkaline species (sodium and potassium) and chloride is very high from the beginning, whereas the release of calcium remains very high even after 3600 h of leaching. Identification of the main transfer mechanisms concludes that the release of soluble pollutants is the combined result of diffusional transfer of pollutants in the solution and the physico-chemical specificity of the species. The modelling based on these features enables a good simulation of the release but reveals a deviation from the experimental results after 500 h for alkaline species and 1000 h for Ca and Cl leaching. However, this deviation only appears after release of the major part of these elements.  相似文献   

14.
This paper presents the results of a wider experimental programme conducted in the framework of the NNAPICS ("Neural Network Analysis for Prediction of Interactions in Cement/Waste Systems") project funded by the European Commission and a number of industrial partners under Brite-EuRamIII. Based on the fact that bottom ashes from waste incineration are classified as non-hazardous wastes according to the European Waste Catalogue, the aim of the present work was to investigate the feasibility of addressing the potential use of such residues in cement-based mixtures. This issue was suggested by the analysis of the properties of different bottom ashes coming from Italian municipal and hospital solid waste incinerators, which showed a chemical composition potentially suitable for such applications. Different mixes were prepared by blending bottom ash with ordinary Portland cement in different proportions and at different water dosages. The solidified products were tested for setting time and bulk density, unconfined compressive strength and evaporable water content at different curing times. The results of the experimental campaign were analysed through a statistical procedure (analysis of variance), in order to investigate the effect of mixture composition (waste replacement level and water dosage) on the product properties.  相似文献   

15.
Temporary stabilization of air pollution control residues using carbonation   总被引:1,自引:0,他引:1  
Carbonation presents a good prospect for stabilizing alkaline waste materials. The risk of metal leaching from carbonated waste was investigated in the present study; in particular, the effect of the carbonation process and leachate pH on the leaching toxicity of the alkaline air pollution control (APC) residues from municipal solid waste incinerator was evaluated. The pH varying test was conducted to characterize the leaching characteristics of the raw and carbonated residue over a broad range of pH. Partial least square modeling and thermodynamic modeling using Visual MINTEQ were applied to highlight the significant process parameters that controlled metal leaching from the carbonated residue. By lowering the pH to 8-11, the carbonation process reduced markedly the leaching toxicity of the alkaline APC residue; however, the treated APC residue showed similar potential risk of heavy metal release as the raw ash when subjected to an acid shock. The carbonated waste could, thereby, not be disposed of safely. Nonetheless, carbonation could be applied as a temporary stabilization process for heavy metals in APC residues in order to reduce the leaching risk during its transportation and storage before final disposal.  相似文献   

16.
This paper explores the kinetics of carbonation of cement-based solidified hazardous waste. This study is part of a wide investigation into the effects of carbonation on solidified waste forms. Two commercially produced heavy metal wastes were solidified with three different types of Portland cement and two mineral admixtures and carbonated under controlled conditions. Measurements of the uptake of carbon dioxide were made for the different mixes and areas showing the degree of carbonation for each cement system were defined. The effects of water/binder ratio, waste and binder type on both total uptake of carbon dioxide and rate of carbonation were investigated and are discussed.  相似文献   

17.
The sludge from a steel processing unit bearing zinc, lead, iron, and manganese was solidified with ordinary Portland cement. The waste was stabilized in the specimens with a waste/binder ratio range of 0.16–4.0. On the basis of the available leaching and unconfined compressive strength, the performance of the solidified/stabilized waste was compared for different numbers of curing days. It was found that curing up to 28 days resulted in a performance improvement, as shown by less leaching of heavy metals and the increased unconfined compressive strength of the specimen. The treatment effectiveness of the solidification/stabilization process was assessed for the metals Pb, Zn, Fe, and Mn, and was found to be 89%, 95%, 74%, and 90%, respectively, for an optimum ratio of 4.0 after 28 days of curing.  相似文献   

18.
In recent years, Backscattered Scanning Electron microscopy techniques (BSE), coupled with an image analysis system have been recognised as a powerful tool for quantitative analysis. This paper investigates the effect of metal additions (Ba, Cu, Ni, Zn, Cr(III), Pb and Cd) to Portland cement to produce a solidified product which meets the durability criteria quantified by the ratio of hydrated products and porosity. In addition, other indicators of the progress of cement hydration such as the bulk density and evaporable water of the solidified products were also measured. Metal concentrations of 0.1 and 1% per weight of cement at a constant water/cement ratio of 0.4 were examined. The same measurements were conducted on control samples of different water/ cement ratio. The results have shown that the control samples at different W/C ratio showed consistent trend in residual cement porosity, density and evaporable water content. It also showed that low dosage of metal nitrate additions can reduce cement hydration by up to 50% and at the same time reduce the observable porosity. Overall, this work has shown that Scanning Electron Microscopy (SEM) and image analysis are powerful tools and could be used to quantify the observable porosity and cement hydration in solidified systems.  相似文献   

19.
The performance of ordinary and organophilic clays in the solidification and stabilization process was investigated with respect to the unconfined compressive strength (UCS) and leaching of phenol‐contaminated soil. The samples contained 2,000 mg/kg of phenol. White cement (15 and 30 percent by weight [wt%]) was used as binder, while ordinary and organophilic clays (8, 15, and 30 wt%) were applied as additives for reducing the harmful effects of phenol interference in cement hydration with a 28‐day curing time. The results revealed that the UCS is reduced by increasing the amount of clays. The values of UCS of all samples met the minimum standards specified for disposal in sanitary landfills determined by developed countries. The leaching test demonstrated that the degree of leaching diminished with increased clay content in all samples of both clay types. This reduction was observed to be greater in samples containing organophilic clay than in bentonite clay samples. Furthermore, the best composition of the materials tested was determined to be 30 wt% white cement plus 13.3 wt% organophilic clay with a compressive strength of 3,839 kPa, phenol removal percentage of 80 percent, and a cost of $67 per ton of contaminated soil.  相似文献   

20.
Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2(6-1) experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO2 until the pH was stable for 2.5h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号