首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A sulfuric acid leak in 1988 at a chloroethene‐contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long‐term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's‐based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30‐m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides‐type bacteria within the sulfuric acid/chloroethene co‐contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C‐TCE and 14C‐VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co‐contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's‐based source area treatment) do not necessarily preclude efficient chloroethene degradation. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
Permeable biobarrier systems (PBSs) are being recognized as low‐cost passive bioremediation technologies for chlorinated organic contamination. This innovative technology can play a crucial and effective role in site restorations. Laboratory‐scale experiments were conducted to investigate the biodegradation of trichloroethylene (TCE) to ethylene in shallow groundwater through the use of a PBS enhanced by bioaugmentation at the U.S. Department of Energy's Savannah River Site (SRS). Two composts and two plant amendments, eucalyptus mulch (EM) and corncobs (CC), were examined for their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. These materials were evaluated for their (1) nutrient and organic carbon content, (2) TCE sorption characteristics, and (3) longevity of release of nutrients and soluble carbon in groundwater to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to dichloroethenes (DCEs); however, the inoculation with the TCE‐degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by‐product concentration, mostly in the form of DCEs and vinyl chloride (VC) followed by a slow degradation to ethylene. Of the tested amendments, eucalyptus mulch was the most effective at supporting the reductive dechlorination of TCE. Corncobs created a very acidic condition in the column that inhibited dechlorination. © 2007 Wiley Periodicals, Inc.  相似文献   

3.
Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation—cis‐dichloroethene (cis‐DCE) and chloride—using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis‐DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump‐and‐treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009. © 2012 Wiley Periodicals, Inc.*  相似文献   

4.
Laboratory column experiments run for up to 13 days compared air sparging of groundwater contaminated by dissolved petroleum hydrocarbons in sterile and non-sterile aquifer sediments as well as uncontaminated sediments and groundwater. Loss of dissolved BTEX compounds in the contaminated columns was very rapid, occurring through volatilisation. The majority of the dissolved total organic carbon (TOC) persisted for much longer periods however. A direct comparison between losses from sterile and non-sterile columns suggested a negligible contribution of biodegradation to the removal of TOC. This was difficult to confirm through examination of O2 utilisation because oxidation of a small amount of reduced sulphur in the aquifer materials was the dominant sink for O2. Despite this, it was possible to conclude that less than 22% of the removal of TOC was through biodegradation during the first three days of air sparging.  相似文献   

5.
Field sampling and testing were used to investigate the relationship between baseline geochemical and microbial community data and in situ reductive dechlorination rates at a site contaminated with trichloroethene (TCE) and carbon tetrachloride (CTET). Ten monitoring wells were selected to represent conditions along groundwater flow paths from the contaminant source zone to a wetlands groundwater discharge zone. Groundwater samples were analyzed for a suite of geochemical and microbial parameters; then push‐pull tests with fluorinated reactive tracers were conducted in each well to measure in situ reductive dechlorination rates. No exogenous electron donors were added in these tests, as the goal was to assess in situ reductive dechlorination rates under natural attenuation conditions. Geochemical data provided preliminary evidence that reductive dechlorination of TCE and CTET was occurring at the site, and microbial data confirmed the presence of known dechlorinating organisms in groundwater. Push‐pull tests were conducted using trichlorofluoroethene (TCFE) as a reactive tracer for TCE and, in one well, trichlorofluoromethane (TCFM) as a reactive tracer for CTET. Injected TCFE was transformed to cis‐ and trans‐dichlorofluoroethene and chlorofluoroethene, and, in one test, injected TCFE was completely dechlorinated to fluoroethene (FE). In situ TCFE transformation rates ranged from less than 0.005 to 0.004/day. In the single well tested, injected TCFM was transformed in situ to dichlorofluoromethane and chlorofluoromethane; the TCFM transformation rate was estimated as 0.001/day. The results indicate that it is possible to use push‐pull tests with reactive tracers to directly detect and quantify reductive dechlorination of chlorinated ethenes and ethanes under monitored natural attenuation conditions, which has not previously been demonstrated. Transformation rate estimates obtained with these techniques should improve the accuracy of contaminant transport modeling. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
A residential area that was formerly part of a silver factory site severely contaminated with chlorinated solvents was remediated using an in situ electro‐bioreclamation technique. Electro‐bioreclamation is a method for heating soil and groundwater combined with soil vapor and low‐yield groundwater extraction and enhanced reductive dechlorination (ERD). During the first two years of remediation in the source area (the intensive phase), a total of 80 kg of volatile organic compounds (VOCs) was removed by heating combined with ERD. After another two years of ERD in the source and plume areas (the attenuation phase), the VOC concentrations were reduced to a level below 100 μg/L in groundwater. Given these satisfying results, electro‐reclamation in combination with ERD turned out to be a successful in situ remediation technique for removing VOCs. © 2006Wiley Periodicals, Inc.  相似文献   

7.
A number of hydrophobic organochlorines, such as hexachlorobenzene and polychlorinated dibenzo‐p‐dioxins/dibenzofurans (PCDD/Fs), have been reported to be persistent and bioaccumulative; however, their availability to biota appear to be limited due to strong sorption to soil/sediment and sequestration with age. Studies to date have shown that the bioavailability of hydrophobic organic chemicals (HOCs) in sediments is highly variable, depending not only on a chemical's lipophicity (Kow), but also molecular steric conformation and sediment characteristics. A subdomain of sediment organic carbon, so‐called black carbon (BC), which has much higher affinity to planar HOCs than amorphous organic carbon, has been found to be the predominant repository of many HOCs. The sediment/soil‐bound HOCs are composed of a rapid and reversible desorbing labile fraction and a slow‐desorbing, or resistant‐to‐desorbing, nonlabile fraction. The latter can account for up to 98 percent of the total. A number of chemical extraction methods have been under development to measure the actual bioavailable concentrations in soil/sediment and have shown some correlation to the results of bioaccumulation and/or biodegradation tests. To date, most of the published studies on this subject have focused on polynuclear aromatic hydrocarbons (PAHs). This review summarizes the governing processes and the testing methodologies relevant to the environmental bioavailability of hydrophobic organochlorines in soils and sediments. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
Field‐scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent–contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2‐tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH‐buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero‐valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
A chlorinated volatile organic compound (cVOC) source area approximately 25 by 100 ft in a heavily industrialized urban area was characterized with groundwater tetrachloroethene (PCE) concentrations up to 9,180 μg/L. This is approximately 6 percent of PCE's aqueous solubility, indicative of the presence of residual dense, nonaqueous phase liquid. The resulting dissolved‐phase plume migrated off‐site. Biotic and abiotic dechlorination using a combination of a food‐grade organic carbon‐based electron donor and zero‐valent iron suspended in a food‐grade emulsifying agent reduced the source area PCE concentrations by 98 percent within 27 weeks, with minimal downgradient migration of daughter products dichloroethene and vinyl chloride. Combining biological dechlorination with iron‐based chemical dechlorination is synergistic, enhancing treatment aggressiveness, balancing pH, and optimizing degradation of both DNAPL and dissolved‐phase cVOCs. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Bioremediation of 1,1,1‐trichloroethane (TCA) is more challenging than bioremediation of other chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). TCA transformation often occurs under methanogenic and sulfate‐reducing conditions and is mediated by Dehalobacter. The source area at the project site contains moderately permeable medium sand with a low hydraulic gradient and is approximately 0.5 acre. TCA contamination generally extended to 35 feet, with the highest concentrations at approximately 20 feet. The concentrations then decreased with depth; several wells contained 300 to 600 mg/L of TCA prior to bioremediation. The area of treatment also contained 2 to 30 mg/L of TCE from an upgradient source. Initial site groundwater conditions indicated minimal biotic dechlorination and the presence of up to 20 mg/L of nitrate and 90 mg/L of sulfate. Microcosm testing indicated that TCA dechlorination was inhibited by the site's relatively low pH (5 to 5.5) and high TCA concentration. After the pH was adjusted and TCA concentrations were reduced to less than 35 mg/L (by dilution with site water), dechlorination proceeded rapidly using whey (or slower with sodium lactate) as an electron donor. Throughout the remediation program, increased resistance to TCA inhibition (from 35 to 200 mg/L) was observed as the microbes adapted to the elevated TCA concentrations. The article presents the results of a full‐scale enhanced anaerobic dechlorination recirculation system and the successful efforts to eliminate TCA‐ and pH‐related inhibition. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Current knowledge and recent advances in the area of microbial reductive dechlorination of polychlorinated organic compounds are summarized. Factors which may limit the efficacy of the dechlorination process for the in situ bioremediation of contaminated soil and sediment systems are identified. Results of recent studies on the anaerobic biotransformation of soil-sorbed chlorinated ethenes and sediment-sorbed chlorinated benzenes are provided to illustrate how low contaminant bioavailability may control the rate and extent of dechlorination in subsurface systems, especially those with long-term contamination. Use of nonionic, polysorbate surfactants as the sole electron donors of a mixed, methanogenic culture supported the microbial sequential reductive dechlorination of either free or sediment-bound hexachlorobenzene (HCB) to primarily 1,3-dichlorobenzene, but did not enhance the bioavailability of sediment-bound HCB as compared to microcosms, which used glucose. Because current knowledge on the interactions of dechlorinating populations with other microbial populations in the presence of alternative terminal electron acceptors (e.g., nitrate, Fe3+ , Mn4+) is limited, such interactions and their effect on the dechlorination process in subsurface systems need to be further explored to improve our understanding of the reductive dechlorination process in complex environmental systems and lead to the development of more efficient in situ bioremediation technologies and strategies.  相似文献   

12.
The process of eutrophication in form of intense plant growth has been observed in some lakes and water streams at the Plitvice Lakes National Park in central Croatia. Here we investigate whether this phenomenon is a consequence of anthropogenic pollution or due to naturally produced organic matter in the lakes. We applied chemical analysis of water at two springs and four lakes (nutrients, dissolved organic carbon (DOC), trace elements) and measurements of surface lake sediments (mineral and organic fraction analyses, trace elements) in four different lakes/five sites. The chemical composition of water does not indicate recent anthropogenic pollution of water because the concentrations of most trace elements are below detection limits. The concentrations of DOC and nutrients are slightly higher in the area of increased eutrophication-plant growth. Also the content of organic matter in the sediment is at the highest level in areas with highest C/N ratio indicating that the organic fraction of this sediment is mainly of terrestrial origin. There is no significant difference among the trace element concentration in the upper segment of all cores, deposited approximately during last 50 years when higher anthropogenic influence is expected due to development and touristic activity, and the lower part of the cores, corresponding to the period approximately 100–200 years before present. The content of trace elements and organic matter in sediments decreases from the uppermost lake downstream. According to our results there is no indication of recent anthropogenic pollution in water and sediment. Higher concentrations of DOC in water as well as phosphorus and some other elements in the lake sediment can be a consequence of input of natural organic matter to the lake water.  相似文献   

13.
Total organic carbon (TOC) concentrations and fluxes in throughfall, forest floor leachate, soil solution (15 and 35 cm depths), and groundwater for coniferous forest sites in the boreal zone throughout Finland are described. Eight upland forest stands and one peatland forest stand are included in the study and the samples were collected during 1991–1997. Carbon (C) pools in the living tree biomass and soil compartments are presented, and the hydrophobic/hydrophilic and acidic components of dissolved organic carbon (DOC) in samples collected in autumn 1999 and spring 2000 from two of the sites are compared. Biomass (aboveground and belowground) pools of C averaged 88 Mg ha-1 and soil (humus layer + 20 cm soil layer) averaged 55 Mg ha-1. Stand throughfall TOC monthly mean concentrations ranged from 4.0 to 18.6 mg L-1 and annual fluxes averaged 4.0 g m-2 yr-1. TOC concentrations in the water passing through the forest floor and soil decreased with depth. Plot mean concentrations at 35 cm depth values ranged from 4.1 to 21.2 mg L-1 and fluxes averaged 3.7 g m-2 yr-1. Throughfall TOC concentrations were lowest during the winter, snowfall period and highest during the growing season. No monotonic trends in throughfall TOC concentrations over the 1991–1997 period were found. Soil solution TOC concentrations varied considerably, both within and between years. DOC in throughfall, forest floor, and soil solutions and in both autumn and spring seasons was dominated by hydrophobic fractions, particularly acids. Spruce canopies and litter appear to be important sources of soluble organic carbon, particularly acidic and hydrophobic compounds. Further studies on the nature and dynamics of organic carbon fluxing through coniferous, boreal forest ecosystems are needed.  相似文献   

14.
The environmental fate of many of the additives in the deicing agents used at airports is poorly understood. One and two years after deicing activities ceased, soil and groundwater samples were taken at an abandoned airport. Benzotriazole (BT), a corrosion and flame inhibitor, was found in low concentrations in soils along runways (mean 0.33 mg/kg), at a snow disposal site (0.66 mg/kg), as well as in sediments of a drainage ditch (13 mg/kg). Locally, high BT concentrations were found in the groundwater below the deicing pad, the regeneration plant and the snow disposal site (1.2 to 1100 g/l). Methyl substituted triazoles or tolytriazoles (MeBT) were found in concentrations less than 10% of the BT concentration. Propylene glycol was not detected in soil samples and in only one of the groundwater samples. Microtox tests of the water samples revealed no acute toxic response, however a reduction in nitrification rate was observed (14–43%). The nitrification response could not be related directly to the BT concentration in the samples, although samples with a high BT concentration showed the largest reduction in nitrification rate. BT showed very little sorption in various soil matrices, only peat and compost with a high organic carbon content showed significant sorption. Sorption could be best described using a Freundlich isotherm. These results indicate a high mobility and possibly long persistence of BT in soil and groundwater, which may be attributed to the absence of microbial degradation of BT.  相似文献   

15.
Groundwater investigations conducted since 1988 at a Tennessee Department of Environment and Conservation (TDEC) Voluntary Oversight and Assistance Program (VOAP) site located in Millington, Tennessee, have defined the lateral and vertical extent of site chemicals of concern (COCs) consisting of tetrachloroethene (PCE), trichloroethene (TCE), and associated degradation products. Results of a groundwater remedial investigation determined that aquifer conditions were favorable for anaerobic degradation of COCs through reductive dechlorination. A subsequent groundwater feasibility study determined that monitored natural attenuation (MNA) coupled with long‐term groundwater monitoring was the most effective and suitable remedial option for the site. A Record of Decision was issued by the TDEC VOAP approving MNA and long‐term groundwater monitoring as the remedial option for the site, a first for such a site in Tennessee involving chlorinated organics. A groundwater fate and transport model (the 1998 model) developed during the RI was used as the basis for the MNA remedy. Analytical data from 1998 to 2008 indicate COCs in former high‐concentration areas continue to degrade at rates consistent with or ahead of the 1998 model predictions. Evidence of reductive dechlorination is also supported by the continued presence of breakdown products—specifically, vinyl chloride and ethene (terminal endpoint of PCE breakdown through reductive dechlorination). The continued detection of breakdown products along the flow‐path wells also confirms the effectiveness of the MNA remedy at the site. Current analytical data indicate that COC plumes beneath the site are not migrating and are actually retracting. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The Gowanus Canal Superfund Site in Brooklyn, New York, is an approximately 1.5‐mile (1.61‐km) long estuary that was historically converted into a canal for industrial and commercial purposes. Three manufactured gas plants (MGPs) were formerly located on the Gowanus Canal and discharged waste into it. Surface sediments remain highly contaminated with polycyclic aromatic hydrocarbons (PAHs) long after the MGPs were razed. A hydrogeologic assessment indicates that groundwater passes through the deeper coal tar–contaminated sediment prior to discharging to the canal. This study was undertaken to investigate if groundwater passing through coal tar–contaminated sediment could be responsible for the ongoing contamination of both surface sediments and surface water in the canal. PAH compound distributions in surface water samples collected from the tidal canal at low tide were compared with PAH compounds found in adjacent groundwater‐monitoring wells, point sources (combined sewer overflows [CSOs]), and surface sediments. The results indicate a strong correlation between PAH contaminant distributions in groundwater, sediment, and surface water, indicating that contaminated groundwater passing through the deeper coal tar–contaminated sediments is the primary mechanism contributing to the contamination of both surface sediment and surface water in the canal. Therefore, any sediment remediation efforts in the Gowanus Canal that fail to evaluate and control the upward transport processes have a high chance of failure due to recontamination from below.  ©2016 Wiley Periodicals, Inc.  相似文献   

17.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

18.
Nanoscale zero valent iron (nZVI) was evaluated in a laboratory treatability study and subsequently injected as an interim measure to treat source area groundwater impacts beneath a former dry cleaner located in Chapel Hill, North Carolina (the site). Dry cleaning operations resulted in releases of tetrachloroethene (PCE) that impacted site soil at concentrations up to 2,700 mg/kg and shallow groundwater at concentrations up to 41 mg/L. To achieve a design loading rate of 0.001 kg of iron per kilogram of aquifer material, approximately 725 kg of NanoFe? (PARS Environmental) was injected over a two‐week period into a saprolite and partially weather rock aquifer. Strong reducing conditions were established with oxidation–reduction potential (ORP) values below –728 mV. pH levels remained greater than 8 standard units for a period of 12 months. Injections resulted in near elimination of PCE within one month. cis‐1,2‐Dichloroethene accumulated at high concentrations (greater than 65 mg/L) for 12 months. MAROS software (Version 2.2; AFCEE, 2006 ) was used to calculate mass reduction of PCE and total ethenes at 96 percent and 58 percent, respectively, compared to baseline conditions. Detections of acetylene confirmed the presence of the beta‐elimination pathway. Detections of ethene confirmed complete dechlorination of PCE. Based on hydrogen gas generation, iron reactivity lasted 15 months. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is utilized by microorganisms as an electron donor to transform electrophilic contaminants via reductive pathways. Over the last decade, organic mulch permeable reactive barriers (PRBs), or biowalls, have received increased interest as a relatively inexpensive slow‐release electron donor technology for addressing contaminated groundwater. To date, biowalls have been installed to enhance the passive bioremediation of groundwater contaminated with a variety of electrophilic compounds, including chlorinated solvents, explosives, and perchlorate. In addition, several mulch biowall projects are currently under way at several U.S. Department of Defense facilities. However, at the present time, the guidelines available for the design of mulch PRBs are limited to a few case studies published in the technical literature. A biowall design, construction, and operation protocol document is expected to be issued by the Air Force Center for Environmental Excellence in 2007. In this publication, three technical considerations that can have a significant impact on the design and performance of mulch PRBs are presented and discussed. These technical considerations are: (1) hydraulic characteristics of the mulch bed; (2) biochemical characteristics of different types of organic amendments used as mulch PRB fill materials; and (3) a transport model that can be used to estimate the required PRB thickness to attain cleanup standards. © 2007 Wiley Periodicals, Inc.  相似文献   

20.
Methane (CH4) in ecosystems originates from ancient petroleum formed deep within the earth and/or via microbial fermentation of organic carbon and subsequent reduction of carbon dioxide (CO2). Given the complexity of different ecosystems, origins of CH4 present can be difficult to determine. This issue was realized in a situation where an antimethanogenic in situ chemical reduction (ISCR) remedial amendment containing organic carbon plus zero‐valent iron was applied to treat chlorinated solvents in groundwater at a former dry cleaner facility. The technology rapidly and effectively reduced the concentration of tetrachloroethene in groundwater thus meeting project goals without the stoichiometric accumulation of catabolites such as trichloroethene (TCE), cis‐1,2‐dichloroethene, or vinyl chloride and without excessive methanogenesis (e.g., <2 mg/L) in the treated area. However, approximately 9 months after treatment, increased levels of CH4 (from 5 to 10 mg/L) were observed downgradient from the treated area. The applied remedial amendment contained approximately 60% (weight basis) fermentation organic carbon and was therefore a potential source of this CH4. However, there was <500 mg/L total organic carbon in groundwater emanating from the upgradient treatment area which was unlikely sufficient to produce that much CH4. Moreover, the soil gas also contained benzene, toluene, ethylbenzene, and xylenes and other gasoline constituents. These data suggested that the presence of three gasoline/diesel underground storage tanks that were previously closed in place with no active remediation performed could be the source of elevated CH4. Thirdly, there were sewer lines, utilities, multiple gasoline stations, and industrial activities in the immediate area. With an initial assumption that CH4 source(s) could include the ISCR amendment over stimulation of production, gasoline sourced CH4 from nearby leaking lines, or sewage from local fractured pipes, carbon isotope analyses—radiocarbon (Δ14C) and stable carbon (δ13C)—were coupled with CH4 and CO2 concentration data from groundwater samples to determine the origin of respired carbon. The δ13C range for carbon sources respired in the process would be approximately ?26.5‰ to ?33.0‰ for the ISCR amendment and total petroleum hydrocarbons (TPH) residuals, respectively. Δ14C is approximately 0‰ and ?999‰ for the ISCR amendment (young carbon) and TPH (old carbon), respectively. The isotopic signature of respired gasses confirmed that elevated CH4 downgradient of the treated area originated primarily from sewer gasses (or fermentation of liquids released from sewer lines). This study provides an overview of the capability to apply carbon isotope geochemistry to confirmation of remedial protocols and sources of anthropogenic carbon pools that conclusively identify the origin of CH4 in a complex ecosystem undergoing a remedial action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号