首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
Groundwater remediation alternatives were simulated for homogeneous and heterogeneous aquifers with a numerical mass transport model. Low‐energy alternatives involved an injection–extraction well pair positioned along a downgradient linear transect. This transect was located 5 m from the contaminant plume and oriented perpendicular to the regional hydraulic gradient. Through numerous trials, for one homogeneous and three heterogeneous settings, the model identified an optimal spacing and minimum pumping rate for a well pair: (1) centered on the downgradient tip of the plume (best centered), and (2) anywhere along the downgradient transect (best overall). Results suggest that low‐energy well pairs are an effective means for containing and removing some contaminant plumes, and best‐performing configurations are generally not centered on the downgradient tip of the initial contaminant plume. ©2015 Wiley Periodicals, Inc.  相似文献   

2.
This study considered alternative configurations of passive wells equipped with filter cartridges for removing contaminated groundwater. The wells fully penetrated a simulated unconfined aquifer. Both homogeneous and heterogeneous hydraulic conductivity distributions were considered. An initial configuration comprised wells along the downgradient perimeter of a contaminant plume, spaced 0.5 m in the direction transverse to regional groundwater flow. Additional wells near the downgradient tip of the plume prevented off‐site contamination. Alternative configurations had the same number of wells, but some included wells along higher (interior) concentration contours to facilitate quicker removal of the contaminant plume. Results suggest that downgradient configurations generally outperform alternatives, although repositioning a few outer wells near the contaminant source may be effective in some cases. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
The objective of this study was to evaluate the capability of partially penetrating (hanging) funnel‐and‐gate structures, designed using reverse flow trajectories, for capturing plumes of contaminated groundwater. Linear capture structures, comprised of two slurry cutoff walls on either side of a permeable gate, were positioned perpendicular to regional groundwater flow in a hypothetical unconfined aquifer. A four‐step approach was used for each of two simulated settings: (1) a numerical mass transport model generated a contaminant plume originating from a source area; (2) a particle‐tracking model projected groundwater flow paths upstream from a treatment gate; (3) the structure was widened and deepened until bounding path lines contained the plume; and (4) mass transport simulation tested the ability of the structure to capture the plume. Results of this study suggest that designing funnel‐and‐gate structures using reverse particle tracking may result in too small a structure to capture a contaminant plume. This practice generally ignores effects of hydrodynamic dispersion, which may enlarge plumes such that contaminants move beneath or around a capture structure. This bypassing effect may be considerable even for low values of dispersivity. Particle‐tracking approaches may also underestimate the amount of time required to reduce contaminant concentrations to acceptable levels. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
This article defines and presents a systematic approach to groundwater plume‐stability assessment. Qualitative and quantitative methods that have been used to assess plume stability at National Priority List sites undergoing optimization are reviewed. Example case studies are included to illustrate the advantages of combining multiple analysis methods. Relevant statistical methods include identifying normal data distributions, detection frequencies, coefficients of variation, individual well trends, and rates of change at individual monitoring locations. Trend estimates for total plume mass and center of mass provide a broader picture of plumewide processes. Deterministic methods, such as quantitative mass‐balance approaches, may be useful for larger plumes. Qualitative assessments include evaluations of the conceptual site model, source strength, attenuation mechanisms, and hydrogeology. Because groundwater plumes are always dynamic, the determination of plume stability has to include qualitative steps relating the rate and magnitude of change to the goals and objectives of the program and the time frame over which critical management decisions are to be made. The assessment of plume stability is, therefore, presented as a process that should involve both qualitative and quantitative steps for determining the acceptability of variability in groundwater contaminant concentrations. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

7.
A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

8.
Experience with groundwater remediation over several decades has demonstrated that successful outcomes depend on quantitative conceptual site models (CSMs). Over the last 30 years, we have progressed from groundwater pump‐and‐treat remedies, which were largely designed based on a water supply perspective, to in situ and combined remedy strategies, which are only beginning to benefit from understanding the aquifer architecture and distribution of contaminant mass to assess plume maturity, mass flux, and more reliable means of fate and transport assessment. The U.S. Air Force funded the development of the Stratigraphic Flux approach to provide a framework for understanding contaminant transport pathways at its complex sites and enable more reliable and cost‐effective remediation. Stratigraphic Flux enables the development of quantitative, flux‐based CSMs that are founded in sequence stratigraphy, and high‐resolution hydraulic conductivity and contaminant distribution measurements. The result is a three‐dimensional graphical mapping of relative contaminant flux and classification of transport potential that is easy for all stakeholders to understand. The Stratigraphic Flux graphical model is based on a hydrofacies classification system that describes transport potential in three segments of the aquifer: transport zones—where the majority of groundwater flow occurs and transport rates are measured in feet per day; slow advection zones—where transport rates are measured in feet per year; and storage zones—where typically less than 1% of flow occurs, and diffusion dominates contaminant transport. The hydrofacies architectures are based on stratigraphy and transport potential is defined by grouping facies by orders of magnitude classes in hydraulic conductivity. By combining the hydrofacies architecture with contaminant concentration distributions, one can map relative contaminant flux to define and target the complex pathways that control contaminant transport and cleanup behavior. In this article, we describe the Stratigraphic Flux framework, focusing on the key information needed and the methods of analysis. We illustrate the results of its application to evaluate migration pathways for trichlorethylene and chromium at a former chrome pit at Air Force Plant 4 in Fort Worth, Texas. A comprehensive guidance document that describes the approach with a broad spectrum of tools and several site examples can be requested from the authors.  相似文献   

9.
CDISCO, a Microsoft Excel spreadsheet–based model, can be used to assist with the design of in situ chemical oxidation (ISCO) systems using permanganate (MnO4?). The model inputs are the aquifer characteristics (porosity, hydraulic conductivity, effective aquifer thickness, natural oxidant demand, kinetic parameters, contaminant concentrations, etc.), injection conditions (permanganate injection concentration, flow rate, and duration), and unit costs for reagent, drilling, and labor. MnO4? transport in the aquifer is simulated and used to estimate the effective radius of influence (ROI) and required injection point spacing. CDISCO then provides a preliminary cost estimate for the selected design conditions. The user can perform multiple runs of CDISCO to optimize the cost of the ISCO design. Comparisons with analytical and numerical models of nonreactive and reactive transport demonstrate that CDISCO accurately simulates MnO4? transport and consumption. Comparison of CDISCO results with the three‐dimensional heterogeneous simulations show that aquifer volume contact efficiency and contaminant mass treatment efficiency are closely correlated with the ROI overlap factor. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
This modeling study evaluated the capability of low‐capacity wells injecting clean water and nonpumped wells equipped with filter media for containing and removing a contaminant plume in groundwater. Outcomes were compared for configurations of: (1) nonpumped wells, (2) nonpumped wells and injection wells (injecting less than 1 m3/d), and (3) no wells (baseline scenario). Results suggest that hybrid configurations featuring both types of wells can be an effective, low‐cost strategy for containing and remediating contaminated groundwater. Strategically positioned injection wells funnel contaminant plumes toward nonpumped wells, thus requiring fewer nonpumped wells to contain and remove a contaminant plume. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Using detailed mass balance and simple analytical models, a spreadsheet‐based application (BioBalance) was developed to equip decision makers with a predictive tool that can provide a semiquantitative projection of source‐zone concentrations and provide insight into the long‐term behavior of the associated chlorinated solvent plume. The various models were linked in a toolkit in order to predict the composite impacts of alternative source‐zone remediation technologies and downgradient attenuation processes. Key outputs of BioBalance include estimates of maximum plume size, the time frame for plume stabilization, and an assessment of the sustainability of anaerobic natural attenuation processes. The toolkit also provides spatial and temporal projections of integrated contaminant flux and plume centerline concentrations. Results from model runs of the toolkit indicate that, for sites trying to meet traditional, “final” remedial objectives (e.g., two to three orders of magnitude reduction in concentration with restoration to potable limits), “dispersive” mechanisms (e.g., heterogeneous flow and matrix diffusion) can extend remedial time frames and limit the benefits of source remediation in reducing plume sizes. In these cases, the removal of source mass does not result in a corresponding reduction in the time frame for source remediation or plume stabilization. However, this should not discourage practitioners from implementing source‐depletion technologies, since results from the toolkit demonstrate a variety of measurable benefits of source remediation. Model runs suggest that alternative, “intermediate” performance metrics can improve and clarify source remediation objectives and better monitor and evaluate effectiveness. Suggested intermediate performance metrics include reduction in overall concentrations or mass within the plume, reduction of flux moving within a plume, and reduction in the potential for risk to a receptor or migration of a target concentration of contaminant beyond a site boundary. This article describes the development of two key modules of the toolkit as well as illustrates the value of using intermediate performance metrics to evaluate the performance of a source‐remediation technology. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Detailed field investigations and numerical modeling were conducted to evaluate transport and fate of chlorinated solvent contamination in a fractured sedimentary bedrock aquifer (sandstone/siltstone/mudstone) at a Superfund site in central New Jersey. Field investigations provided information on the fractured rock system hydrogeology, including hydraulic gradients, bulk hydraulic conductivity, fracture network, and rock matrix, and on depth discrete contaminant distribution in fractures (via groundwater sampling) and matrix (via detailed subsampling of continuous cores). The numerical modeling endeavor involved application of both an equivalent porous media (EPM) model for flow and a discrete fracture network (DFN) model for transport. This combination of complementary models, informed by appropriate field data, allowed a quantitative representation of the conceptual site model (CSM) to assess relative importance of various processes, and to examine efficacy of remedial alternatives. Modeling progressed in two stages: first a large‐scale (20 km x 25 km domain) 3‐D EPM flow model (MODFLOW) was used to evaluate the bulk groundwater flow system and contaminant transport pathways under historic and current aquifer stress conditions and current stresses. Then, results of the flow model informed a 2‐D DFN transport model (FRACTRAN) to evaluate transport along a 1,000‐m flowpath from the source represented as a 2‐D vertical cross‐section. The combined model results were used to interpret and estimate the current and potential future extent of rock matrix and aqueous‐phase contaminant conditions and evaluate remedial strategies. Results of this study show strong effects of matrix diffusion and other processes on attenuating the plume such that future impacts on downgradient well fields under the hydraulic stresses modeled should be negligible. Results also showed futility of source remediation efforts in the fractured rock, and supported a technical impracticability (TI) waiver for the site. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
14.
Despite the installation in the 1980s and 1990s of hydraulic containment systems around known source zones (four slurry walls and ten pump‐and‐treat systems), trichloroethene (TCE) plumes persist in the three uppermost groundwater‐bearing units at the Middlefield‐Ellis‐Whisman (MEW) Superfund Study Area in Mountain View, California. In analyzing TCE data from 15 recovery wells, the observed TCE mass discharge decreased less than an order of magnitude over a 10‐year period despite the removal of an average of 11 pore volumes of affected groundwater. Two groundwater models were applied to long‐term groundwater pump‐and‐treat data from 15 recovery wells to determine if matrix diffusion could explain the long‐term persistence of a TCE plume. The first model assumed that TCE concentrations in the plume are controlled only by advection, dispersion, and retardation (ADR model). The second model used a one‐dimensional diffusion equation in contact with two low‐permeability zones (i.e., upper and lower aquitard) to estimate the potential effects of matrix diffusion of TCE into and out of low‐permeability media in the plume. In all 15 wells, the matrix diffusion model fit the data much better than the ADR model (normalized root mean square error of 0.17 vs. 0.29; r2 of 0.99 vs. 0.19), indicating that matrix diffusion is a likely contributing factor to the persistence of the TCE plume in the non‐source‐capture zones of the MEW Study Area's groundwater‐extraction wells. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
With the successful implementation of in situ chemical oxidation (ISCO) programs to remediate contaminated soil and groundwater aquifers worldwide, ISCO has become established as a traditional remediation technique. On the basis of historical success, expanded ISCO practices are now routinely applied to increasingly difficult geologic environments, including formerly problem locations such as those containing nonaqueous‐phase liquid, fractured bedrock, low‐conductivity media, and highly layered and/or heterogeneous aquifers. Effective delivery of amendment, however, remains the single most important aspect of successful remediation, particularly given the range of potentially applicable delivery methods and site complexities. Selecting the most appropriate technique for any specific site depends upon a clear understanding of the variety of site constraints, including factors such as site conditions, underlying geology, contaminant distribution, technology limitations, and other project‐specific factors. Because the injection program is often the largest cost associated with implementation of an ISCO project, it is critical to develop a cost‐effective injection method for each site. Constant head injection provides a cost‐effective alternative for sites with low‐conductivity lithology(ies). Constant head injection employs a continuous low‐pressure application method to deliver ISCO agents over a long period of time. This synergistic method complements the existing site conditions and heterogeneity, working with the natural conditions, rather than trying to overcome or destroy the site geology using highly aggressive delivery techniques. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The data mining/groundwater modeling methodology developed in McDade et al. (2013) was performed to determine if matrix diffusion is a plausible explanation for the lower‐concentration but persistent chlorinated solvent plumes in the groundwater‐bearing units at three different pump‐and‐treat systems. Capture‐zone maps were evaluated, and eight wells were identified that did not draw water from any of the historical source areas but captured water from the sides of the plume. Two groundwater models were applied to study the persistence of the plumes in the absence of contributions from the historical source zones. In the wells modeled, the observed mass discharge generally decreased by about one order of magnitude or less over 4 to 10 years of pumping, and 1.8 to 17 pore volumes were extracted. In five of the eight wells, the matrix diffusion model fit the data much better than the advection dispersion retardation model, indicating that matrix diffusion better explains the persistent plume. In the three other wells, confounding factors, such as a changing capture zone over time (caused by changes in pumping rates in adjacent extraction wells); potential interference from a high‐concentration unremediated source zone; and limited number of pore volumes removed made it difficult to confirm that matrix diffusion processes were active in these areas. Overall, the results from the five wells indicate that mass discharge rates from the pumping wells will continue to show a characteristic “long tail'' of mass removal from zones affected by active matrix diffusion processes. Future site management activities should include matrix diffusion processes in the conceptual site models for these three sites. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
A three-dimensional, multiphase, multicomponent compositional simulator was employed to simulate nonaqueous phase liquid (NAPL) migration during surfactant-enhanced aquifer remediation (SEAR) in spatially correlated heterogeneous fields. Aquifer heterogeneity was accounted for by considering the permeability to be a spatially random variable, and a geostatistical method was used to generate random distributions of the permeability. Spatial distributions of saturations in the NAPL and temporal changes of organic recovery, effluent concentrations of organics and surfactant, and pressure drop at the injection well for heterogeneous aquifers were compared with those in a homogeneous aquifer to examine the effects of different levels of heterogeneity. Variations in permeability fields have a pronounced effect on the organic recovery efficiency due to the long-term persistence of nonaqueous phase liquid and additional dispersion. Permeability heterogeneity also leads to the tailing off of effluent organic concentrations and significant loss in injectivity over the remediation period. For a small slug of surfactant, surfactant-enhanced remediation resulted in a relatively small improvement in the recovery of NAPL, especially in highly heterogeneous aquifers. Migration of high-concentration organic plumes to other layers by crossflow was also found to have a significant influence on SEAR behavior.  相似文献   

18.
Smart characterization approaches apply the latest high‐resolution site characterization methods to find the contaminant mass flux, by integrating relative permeability mapping, classical hydrostratigraphy interpretation, and high‐density groundwater and saturated soil sampling. The key factor that makes Smart characterization different is the application of quantitative saturated soil sampling in less permeable slow advection and storage zones to diagnose plume maturity and understand its implications for remedy selection and performance. Because direct sensing tools like the membrane interface probe are capable of providing screening‐level assessments for hydrocarbons and chlorinated solvents in storage zones, but not 1,4‐dioxane, the recommended Smart approach involves application of specialized high‐capacity mobile laboratories or rapid turn‐around using fixed commercial labs. In addition to the benefit of rapidly characterizing sites, Smart characterization facilitates a flux‐based conceptual site model, which allows stakeholders to focus remedies on the mobile portion of the contaminant mass or, in effect, the mass that matters. Through systematic planning and implementation, predesign characterization can be completed to optimize source and plume remedy strategies, balancing investment in Smart characterization with reductions in total life‐cycle costs to ensure that an appropriate return on investigation is obtained.  © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The soil and two aquifers under an active lumber mill in Libby, Montana, had been contaminated from 1946 to 1969 by uncontrolled releases of creosote and pentachlorophenol (PCP). In 1983, because the contaminated surface soil and the shallower aquifer posed immediate risks to human health and the natural environment, the U.S. Environmental Protection Agency placed the site on its National Priorities List. Feasibility studies in 1987 and 1988 determined that in situ bioremediation would help clean up this aquifer and that biological treatment would help clean up the contaminated soils. This article outlines the studies that led to a 1988 EPA record of decision and details the EPA-approved remedial plan implemented starting in 1989; EPA estimates a total cost of about $15 million (in 1988 dollars). The plan involves extensive excavation and biological treatment of shallow contaminated soils in two lined and bermed land treatment units, extraction of heavily contaminated groundwater, an aboveground bioreactor treatment system, and injection of oxygenated water to the contaminant source area, as well as to other on-site areas affected by the shallower aquifer's contaminant plume.  相似文献   

20.
Field‐scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent–contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2‐tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH‐buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero‐valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号