首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.  相似文献   

2.
While the cathode ray tube (CRT) funnel containing lead could be transported to a smelting facility to recover lead, which could be an available option in domestic, a proper technology to recycle a CRT panel must be developed. Thus, it was suggested that CRT panel glass be used as aggregates of concrete blocks and clay bricks. Samples of blocks and bricks were fabricated with CRT powders and tested to measure their strength and absorption rate to determine their qualities, and environmental soundness was determined by measuring the leaching rate of hazardous metals. For concrete blocks, CRT panel glass powders incorporated as aggregates up to 40 % replacing stone powder was proposed as the proper condition for manufacturing blocks. Around 2 % of CRT panel incorporated into clay brick to substitute Kaoline was suggested to fabricate the best quality of clay brick. Results of leaching test met the criteria with much less concentration of hazardous metals, even lead compound containing in the CRT funnel. To conclude, the use of CRT panel powder after crushing it to the proper size as an aggregate of concrete blocks or clay bricks could be one of the appropriate alternatives to recycle for CRT glass waste being generated drastically in a short term.  相似文献   

3.
In this study the use of 'cleaned' end of life (EOL) cathode ray tube (CRT) glass as a raw material in ceramic glazes is described. At present, the recycling and industrial utilization of CRT, a glass material from TV and computer sets, is a subject of intense research with particular regard to the so-called open-loop recycling, namely cycles different from that of the origin. However, the use of CRT glass as a secondary raw material is strictly related to the demand of high-quality raw material. The good preliminary results reached by introducing clean TV and PC monitor panel and cone glass into ceramic glaze formulations pushed research toward the setting-up of a base glaze that is exploitable for the production of pigmented, silk-screened and flame-hardened glazes (products used industrially for coating floor tiles). The aesthetic and chemical characterization of the tiles glazed by this product showed an extremely similar behaviour to originals that did not contain CRT glass. The good technical results achieved have been supported by the life cycle assessment analysis, which has demonstrated a reduction of the environmental impact of the CRT glass-containing ceramic glaze with respect to the standard one.  相似文献   

4.
Within the European Union, it is estimated that between 8 and 9 million tonnes of waste electric and electronic equipment (WEEE) arises annually, of which television sets and computers account for an important part. Traditionally, Cathode Ray Tubes (CRT) have been used for TVs and computer monitors, but are rapidly being replaced by flat-screen technology. Only part of the discarded CRT glass is being recycled. Primary smelters use large amounts of silica flux to form iron-silicate slag, and can, in most cases, tolerate lead input. Use of discarded CRT glass in copper smelting is a potential alternative for utilization of the glass.The mineralogical composition of a slag sampled during ordinary slag praxis has been compared with that of a mixture of slag and CRT glass when re-melted and slowly cooled. Slag (iron-silicate slag) from Boliden Mineral AB, Sweden, was used for the experiments. Slag and glass have been mixed in various proportions: pure slag, pure glass, 90% slag-10% glass and 65% slag-35% glass, and heated in an inert atmosphere up to 1400 °C in a Netzsch Thermal Analysis (TA) instrument. The re-melted material has been analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to determine changes in mineralogical composition after mixing with glass.The results show that the main mineralogical component of the slag is fayalite; the CRT glass is amorphous. The main crystalline phases of the slag do not change with addition of glass. An amorphous phase appears when the addition of glass is increased, which gives the sample a different structure.  相似文献   

5.
The characterization of waste cathode-ray tube glass   总被引:3,自引:0,他引:3  
New re-use applications are needed to address the relatively large quantity of waste electronic products generated in the world. Cathode-ray tubes (CRTs) from computer monitors and TV sets are a large component of such waste. The three glass components of CRTs are the funnel, panel and neck, which are produced by various manufacturers and are now collected by asset-recovery centres. In this paper, we characterize waste funnel and panel glass from dismantled cathode-ray tubes with a view to assisting the development of new re-use applications. The heavy metal (lead, barium, and strontium) content of such glass represents an acute risk to the environment. Our results of the chemical composition for different kinds of waste CRT glass including black & white and color CRTs show that CRT glass from different producers have generally similar chemical compositions. In particular, the compositions of funnel and panel black & white CRT glass are similar, but are different to those of panel and funnel color CRT glass. We also measured the following specific properties of each type of CRT glass: density, glass transition temperature, and linear coefficient of thermal expansion. It was found that the coefficients of thermal expansion of CRT glass do not vary with their composition. In contrast, the measured densities and glass transition temperatures do vary with composition. On the basis of our experimental data and data found in the literature, we outline the main properties of several waste CRT glass currently in circulation. The aim of this study was to provide the data required to determine if this kind of waste could be entirely (or partially) re-used and to aid the search for promising methods of treatment.  相似文献   

6.
Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.  相似文献   

7.
The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.  相似文献   

8.
We compared the environmental burdens in the management of end-of life cathode ray tubes (CRTs) within two frameworks according to the different technologies of the production of televisions/monitors. In the first case, CRT recycling is addressed to the recovery of the panel and funnel glass for the manufacturing of new CRT screens. In the second case, where flat screen technology has replaced that of CRT, the recycling is addressed to the recovery of the glass cullet and lead for other applications. The impacts were evaluated according to the problem-oriented methodology of the Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. Our data confirm that in both cases, the recycling treatment allows benefits to be gained for the environment through the recovery of the secondary raw materials. These benefits are higher for the “CRT technology” framework (1 kg CO2 saved per CRT) than for the “flat screen technology” (0.9 kg CO2 saved, per CRT, as the highest possible), mainly due to the high energy consumption for lead separation from the funnel glass. Furthermore, the recovery of yttrium from the fluorescent powders that are a residue of the recycling treatment would further improve the CO2 credit for both the frameworks considered, which would provide a further saving of about 0.75 kg CO2 per CRT, net of the energy and raw materials needed for the recovery.Overall, this study confirms that, even with a change in the destination of the recovered materials, the recycling processes provide a benefit for the environment: indeed the higher loads for the environment are balanced by avoiding the primary production of the recovered materials.  相似文献   

9.
胡彪  回文龙 《化工环保》2017,37(4):389-394
随着显像管技术的发展,我国迎来了大量阴极射线管(CRT)玻璃的报废期。废弃的CRT玻璃中含有大量的铅,属于危险废物。从国内外废CRT含铅玻璃的处理处置现状出发,归纳总结了废CRT含铅玻璃中铅的分离回收技术工艺,并分析了其特点及存在的问题。指出,未来该领域新技术的研发应同时注重4个方面:铅的回收率高,对玻璃中的其他组分能够有效利用,满足经济可行性要求,便于工业化生产。  相似文献   

10.
Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The properties of concretes containing waste glass as fine aggregate were investigated in this study. The strength properties and ASR expansion were analyzed in terms of waste glass content. An overall quantity of 80 kg of crushed waste glass was used as a partial replacement for sand at 10%, 15%, and 20% with 900 kg of concrete mixes. The results proved 80% pozzolanic strength activity given by waste glass after 28 days. The flexural strength and compressive strength of specimens with 20% waste glass content were 10.99% and 4.23%, respectively, higher than those of the control specimen at 28 days. The mortar bar tests demonstrated that the finely crushed waste glass helped reduce expansion by 66% as compared with the control mix.  相似文献   

11.
A study of the effects of LCD glass sand on the properties of concrete   总被引:1,自引:0,他引:1  
In order to study the recycling of discarded liquid crystal display (LCD) glass into concrete (LCDGC), a portion of the usual river sand was replaced by sand prepared from discarded LCD glass. Three different mix designs were regulated by the ACI method (fc(28)=21, 28, and 35MPa) with 0%, 20%, 40%, 60%, and 80% LCD glass sand replacements investigated; their engineering properties were determined. Test results revealed that, when compared to the design slump of 15cm, the 20% glass sand concrete for the three different mix designs kept good slump and slump flow. Furthermore, a slump loss ranging from 7 to 11cm was observed for specimens with 60% and 80% glass sand replacement for the design strengths of 28 and 35MPa. The compressive strengths of the concrete with glass sand replacement were higher than the design strengths. Moreover, the durability of the concrete with 20% glass sand replacement was better than that of the control group. Surface resistivity for specimens with different amounts of LCD glass sand replacement was also higher than that in the control group for mid to long curing ages. The sulfate attack in concrete with different amounts of glass sand replacement caused less weight loss than in the control group. Moderate chloride ion penetration was observed for glass sand concrete. Furthermore, the measured ultrasonic pulse velocities for LCD glass sand concrete specimens were higher than 4100m/s, which qualified these specimens as good concrete. OM and SEM indicate that the dense C-S-H gel hydrate was produced at the interface between the glass sand and cement paste. The test results indicate that the addition of 20% LCD glass sand to concrete satisfies the slump requirements and improves the strength and durability of concrete. This suggests that LCD glass sand can potentially be used as a recycled material in concrete applications.  相似文献   

12.
以废弃的阴极射线管锥玻璃碱性浸出渣及屏玻璃混合粉末为原料烧制泡沫玻璃。考察了发泡温度、屏玻璃加入量、发泡剂种类、发泡剂加入量、稳泡剂添加量对所制备的泡沫玻璃密度及抗压强度的影响。实验结果表明:在发泡温度800 ℃、屏玻璃加入量50%(w)、稳泡剂硼酸加入量5%(以锥玻璃碱性浸出渣及屏玻璃粉末总质量为基准,下同)、发泡剂SiC加入量15%最佳条件下烧制的泡沫玻璃密度达417 kg/m3,抗压强度达1.09 MPa,可满足建筑用泡沫玻璃的Ⅳ型物理性能指标。本实验烧制的泡沫玻璃的Pb浸出量为1.27 mg/L,Ba浸出量为0.06 mg/L,均满足固体废物的浸出毒性标准。  相似文献   

13.
Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal. This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers’ compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were found in lower levels than the legislative limits.  相似文献   

14.
Cathode ray tube (CRT) funnel glass remains an urgent environmental problem and is composed mainly of lead oxide and silicon oxide. In this research, the residue could be obtained from 2 h to 500 rpm activated CRT funnel glass after extracting lead via acid leaching under the conditions of HNO3 concentration 1.0 mol/L, leaching temperature 95 °C and leaching time 1 h. In order to reutilize the residue, its physico-chemical properties were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, thermogravimetric analysis, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that the residue was an amorphous superfine powder with approximately 93 wt% silica oxide and specific surface area of more than 170 m2/g. It can be reutilized as white carbon black.  相似文献   

15.
以铅锌尾矿和CRT玻璃固体废弃物为主要原料,采用烧结法制备微晶玻璃材料.为确定基础玻璃的成分,以及尾矿、CRT玻璃及各化工原料的用料比例,设计了正交实验;研究了CaO,Al2O3,MgO等氧化物添加量对微晶玻璃结构及性能的影响规律.通过差热分析(DTA)、X射线衍射(XRD)、扫描电镜(SEM)等分析方法,考察了微晶玻璃产品的晶相、晶体形貌特征及性能.结果表明:利用铅锌尾矿、CRT玻璃废弃物制备微晶玻璃的最佳配方为:尾矿20%、CRT玻璃30%、添加辅料石英砂29.7%、方解石25%、Al2O3 12%、晶核剂TiO2 1%.SEM和XRD分析可知,微晶玻璃的主晶相为透辉石;打磨抛光处理后,平均显微硬度为8.76 GPa,平均抗折强度为223.1MPa;经酸、碱浸蚀后,质量变化分别为0.43%和0.58%,耐酸碱腐蚀性良好.  相似文献   

16.
Use of waste ash from palm oil industry in concrete   总被引:1,自引:0,他引:1  
Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.  相似文献   

17.
A comprehensive suite of geotechnical laboratory tests was undertaken on samples of recycled crushed glass produced in Victoria, Australia. Three types of recycled glass sources were tested being coarse, medium and fine sized glass. Laboratory testing results indicated that medium and fine sized recycled glass sources exhibit geotechnical behavior similar to natural aggregates. Coarse recycled glass was however found to be unsuitable for geotechnical engineering applications. Shear strength tests indicate that the fine and medium glass encompass shear strength parameters similar to that of natural sand and gravel mixtures comprising of angular particles. Environmental assessment tests indicated that the material meets the requirements of environmental protection authorities for fill material. The results were used to discuss potential usages of recycled glass as a construction material in geotechnical engineering applications particularly road works.  相似文献   

18.
Journal of Material Cycles and Waste Management - In this study, a mechanochemical activation technique to effectually extract lead from the funnel glass of cathode ray tube (CRT) is proposed. A...  相似文献   

19.
20.
Investigation on the fatigue life of hybrid composites is critical to extend their applications and acceptance among industries; however, there is a lack of research focus on fatigue performance of the hybrid composite. In this study, the fatigue life of glass/kenaf woven-ply hybrid composite with thermoplastic and thermoset polymer matrix was investigated. Hybrid composites consist of two different fibre configurations: kenaf/glass/kenaf and glass/kenaf/glass. Thermoplastic hybrid composites were manufactured through the hot press moulding compression method, while thermoset hybrid composites were fabricated through the vacuum-assisted resin infusion method. The tensile strength and fatigue strengths of the kenaf/glass/kenaf composite have been identified to be significantly lower than those of the glass/kenaf/glass composite regardless of the types of matrix used. However, thermoplastic-based kenaf/glass/kenaf composites are less fatigue sensitive compared to glass/kenaf/glass composites; however, this phenomenon is vice versa for thermoset composites due to the epoxy matrix, which limits the stiffening effect in natural fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号