首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

2.
Uncertainties still remain in the size and number emission of nucleation and soot mode particles from diesel vehicles and understanding of the nucleation process under different ambient conditions. Particle emission measurements were carried out with a EURO-3 certified European diesel passenger car running on low (<10 ppm S) and high (310 ppm S) sulfur fuel. A newly developed in situ diluter which sampled exhaust continuously from the tailpipe and diluted in two steps by a factor of 500–6000 was employed to study nucleation particle formation under well-controlled temperature and humidity conditions. Particle emission measurements were also carried out with a mobile laboratory chasing the exhaust plume of the same vehicle in summer (19–25 °C) and winter (9 °C), with no significant difference of the nucleation or soot mode particle emission found. The particle size distributions compared well with those measured in the laboratory with the same vehicle under identical driving conditions. Simple nucleation and coagulation calculations were compared with the atmospheric and laboratory measurements. It was shown that the primary dilution step had the largest impact on the nucleation mode formation, while the model overpredicted the influence of temperature and humidity. No nucleation mode particles were observed running the diesel vehicle on low (<10 ppm S) fuel.  相似文献   

3.
The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×106 cm−3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×108 cm−3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.  相似文献   

4.
The measured physical size distributions of sub-micron particles during cold season at Pune, India are analyzed to explore the characteristics of nucleation and growth properties. Preliminary analysis of aerosol size distribution in time-series shows large increase in number concentration due to nucleation events between 0800 h and 1030 h at this location. The observable quantities such as condensable vapor concentration (C), its source rate (Q), growth rate (GR) and condensable sink (CS) are estimated from the time-series evolutions of aerosol size distributions. The concentration of vapor and its source rate were about 19.8 ± 2.15 × 107 molecules cm?3 and 1.28 ± 0.084 × 107 cm?3 s?1 respectively. The average condensation sink and growth rate were 7.1 ± 0.4 × 10?2 s?1 and 16.95 ± 1.86 nm h?1 respectively during the growth period. The values are high enough to trigger the nucleation bursts and enhance subsequent growth rates of nucleation mode particles at this location. The magnitudes are in the range of those observed at New Delhi, India and much higher than those of European cities. The ratio of apparent to real nucleation rate is found to be a measure of number concentration of freshly produced particles by photo-chemical nucleation. The predicted number concentrations corresponding to measured distributions of mid-point diameter increases with the size for both 1 nm nucleated clusters and 3 nm particles. The database of all the possible event days and the event characteristics forms the basis for future works into the causes and implications of atmospheric particle formation at this location.  相似文献   

5.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

6.
Overnight aging experiments with diesel engine exhaust from a diesel power aggregate, with no or 9 kW load, and from a diesel-fueled vehicle were conducted in an environmental chamber. During a 24 h aging period the volatilities of monodisperse particles at 140, 250 and 360 °C heater temperatures were analyzed with volatility tandem differential mobility analysis (VTDMA). The particulate organic to total carbon ratio and organic carbon subfractions at 120, 250, 450 and 550 °C were analyzed with thermal-optical carbon analysis for samples from fresh, 8 or 18 h aged and 24 h aged aerosol. During the experiment also the particle size distribution, ozone and nitrogen oxide concentration, and temperature, relative humidity and total solar and total ultraviolet radiation in the chamber were monitored.After injection, the geometric mean diameter and number concentration of the particles in the chamber were 66–85 nm and 0.9–4.6×105 cm−3, respectively. The particles were seen to grow fast, at a growth rate of 18–47 nm h−1 during the first hour. The fresh particles from the diesel power aggregate contained 37–45% of apparent volume semi-volatile compounds with no load and 10–24% with 9 kW load. The semi-volatile apparent volume fraction at 360 °C for 50 nm particles produced by the diesel power aggregate was 57%. After 24 h of aging, the semi-volatile apparent volume fraction at 360 °C for 100 nm particles was 99%. This suggests that the particles in the 24 h aged aerosol at this size class are no more primary particles but particles that are formed in the chamber through nucleation and subsequent growth.  相似文献   

7.
Characteristic parameters of black carbon aerosol (BC) emitted from jet engine were measured during ground tests and in-flight behind the same aircraft. Size distribution features were a primary BC mode at a modal diameter D≈0.045 μm, and a BC agglomeration mode at D<0.2 μm. The total BC number concentration at the engine exit was 2.9×107 cm-3 with good agreement between model results and in-flight measured number concentrations of non-volatile particles with D⩾0.014 μm. A comparison between total number concentration of BC particles and the non-volatile fraction of the total aerosol at the exit plane suggests that the non-volatile fraction of jet engine exhaust aerosol consists almost completely of BC. In-flight BC mass emission indices ranged from 0.11 to 0.15 g BC (kg fuel)-1. The measured in-flight particle emission value was 1.75±0.15×1015 kg-1 with corresponding ground test values of 1.0–8.7×1014 kg-1. Both size distribution properties and mass emission indices can be scaled from ground test to in-flight conditions. Implications for atmospheric BC loading, BC and cirrus interaction and the potential of BC for perturbation of atmospheric chemistry are briefly outlined.  相似文献   

8.
Depending on the operating conditions and the age of the converter, mean platinum emissions ranged from 7 to 123 ng m-3 corresponding to emission factors between 9 and 124 ng km-1. There were no statistically significant differences between the four converter brands tested. The data from new (12–90 ng km-1) and old catalytic converters (9–26 ng km-1) installed on a medium-powered gasoline engine (1.8 l 66 kW) showed a tendency towards decreasing platinum emission with increasing use. The platinum emissions increased with rising simulated speed and exhaust temperature. The lowest mean emission from new converters (12 ng km-1) was found at a constant speed of 80 km h-1, the highest (90 ng km-1) at 130 km h-1. Using the US72 or the US72-EUDC test cycles the emission factors were higher (37 or 19 ng km-1) than at 80 km h-1 indicating that additional mechanical or thermal impacts enhance the platinum abrasion at cycle conditions. After installing catalytic converters tested with the 1.8 l engine on a smaller engine (1.4 l 44 kW), the platinum emissions measured at the US72 cycle and a high-speed condition (140 km h-1) were only 9 and 22 ng km-1, respectively. Platinum is almost exclusively emitted bound to aluminum oxide particles where (depending on the driving conditions) 43–74% of these emitted particles had aerodynamic diameters >10 μm. The alveolar fraction (<3 μm) was between 11 and 26% (1.8 l engine) and between 21 and 36% (1.4 l engine). If at all, soluble platinum is emitted in only very small quantities (⩽1%).  相似文献   

9.
The present paper presents results from the analysis of 29 individual C2–C9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0–85% ethanol), and mineral diesel in various blends (0–100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies.An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach.The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km?1 for LD and mopeds and mg kW h?1 for HD, all normalised to fuel consumption: mg dm?3 fuel) of the harmful HCs, benzene and 1,3-butadiene.Another important finding is a strong linear correlation of the regulated “total” hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in emission control laboratories, whereas C2–C9 are not. The revealed strong correlations broadens the usability of data from vehicle emission control laboratories and facilitates the comparison of the ozone formation potential of HCs in exhaust from of old and new vehicle/engine/fuel technologies.  相似文献   

10.
The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h)?1 and that of diesel is 30.7 mg (kW h)?1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.  相似文献   

11.
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20–25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A – Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application.Results showed that the total PAH emission factor varied from 41.9 μg km?1 to 612 μg km?1 in the gasohol vehicle, and from 11.7 μg km?1 to 27.4 μg km?1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km?1 to 4.61 μg TEQ km?1 for the gasohol vehicle and from 0.0117 μg TEQ km?1 to 0.0218 μg TEQ km?1 in the ethanol vehicle.For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission.  相似文献   

12.
Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100–500 nm) and PM1 mass concentration, with a maximum total number concentration of 3.8 × 104 cm?3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm?3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM1 exhibited on average above 150 μg m?3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.  相似文献   

13.
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm?3) was about one-half of that near motorways (1211 cm?3) and about twice as high as that in the urban background (269 cm?3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2 = 0.3 at p < 0.05) and correlated well with each other in real time (R2 = 0.87 at p < 0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120–150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2 m to 5 m of the kerb. Measured concentrations decreased to background at about 15 m from the kerb when the wind speed was 1.3 m s?1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.  相似文献   

14.
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments.  相似文献   

15.
Intensive aircraft- and ground-based measurements of ultrafine to supermicron particles in the Osaka metropolitan area, Japan, were carried out on 17–19 March 2003, in order to investigate vertical profiles of size-resolved particles in the urban atmosphere. Differently sized particles were observed at different altitudes on 19 March. Relatively higher concentrations of ultrafine particles (31 nm) and submicron particles (0.3–0.5 μm) were measured (100–200 cm−3) at altitudes of 300 and 600 m, whereas supermicron particles (2–5 μm) were present (300–600 cm−3) at higher altitudes (1300 m in the morning and 2200 m in the afternoon). The chemical composition analysis showed that supermicron particles evidently comprised mainly soil particles mixed internally with anthropogenic species such as carbonaceous components and sulfate. Numerical simulation using the Chemical weather FORecasting System (CFORS) suggested the long-range transport of soil dust and black carbon from the Asian continent. Total number concentrations of particles sized 10–875 nm ranged from 4.8×103 to 3.0×104 cm−3 at an altitude of 300 m and from 7.3×102 to 4.8×103 cm−3 at an altitude of 1300 m. Total number concentrations of particles sized 10–875 nm correlated very well with NOX concentrations, and, therefore, ultrafine and submicron particles were likely emitted from urban activities such as car traffic and vertically transported. Number size distributions at lower altitudes obtained by aircraft measurements were similar to those obtained by ground measurements, with modal diameters of 20–30 nm on 18 March and about 50 nm on 19 March.  相似文献   

16.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

17.
The heterogeneous reactivity of nitrogen dioxide with pyrene and 1-nitropyrene (1NP) adsorbed on silica particles has been investigated using a fast-flow-tube in the absence of light. Reactants and products were extracted from particles using pressurised fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different NO2 concentrations and second order rate constants were calculated considering the oxidant concentration. The following rate constant values were obtained at room temperature: k(NO2 + pyrene) = (9.3 ± 2.3) × 10?17 cm3 molecule?1 s?1 and k(NO2 + 1NP) = (6.2 ± 1.5) × 10?18 cm3 molecule?1 s?1, showing that the reactivity of 1NP was slower by a factor of 15 than that of pyrene. 1NP was identified as the only NO2-initiated oxidation product of pyrene and all the three dinitropyrenes were identified in the case of the 1NP reaction. The product quantification allowed showing that the kinetics of oxidation product formation was equal to that measured for parent compounds degradation, within uncertainties, confirming the validity of the reaction kinetics measurements.  相似文献   

18.
The assessment of the wind blown dust emission for Europe and selected regions of North Africa and Southwest Asia was carried out using a mesoscale model. The mesoscale model was parameterized based on the current literature review. The model provides data on PM10 emission from several dust reservoirs (anthropogenic, agriculture, semi- and natural) with spatial resolution of 10 × 10 km and temporal resolution of 1 h. The spatial variability of PM10 emission depends on soil texture, land cover/land use as well as meteorological conditions. Lands covered with water or permanently wet were excluded from the model. The land covered with vegetation is treated as dust reservoir whose dust emission capacity depends on the type of vegetation and cover. The dust reservoirs are divided into reservoirs with stable and unstable surface. The changes of emission in time depend on meteorological parameters.The wind blown dust emission should be treated as a non-continuous spatio-temporal process. The emissions are estimated with high uncertainty. The estimated PM10 yearly total load emitted by wind from the European territory is highly differentiated in space and time and is equal to 0.74 Tg. The total load of PM10 emitted by wind from North African and Southwest Asian land surface located in the vicinity of European boundaries is assessed as nearly 50% (0.43 Tg) of the total load estimated for the whole Europe.The average yearly PM10 emission factor for Europe was estimated at 0.139 Mg km?2.The PM10 emission from agricultural areas is estimated at 52% of the total wind blown emission from the domain of the European Union project “Improving and applying methods for the calculation of natural and biogenic emissions and assessment of impacts to the air quality” - NatAir.PM10 emission factor for natural areas of Europe is estimated at 0.021 Mg km?2. Appropriate factors for agricultural areas and anthropogenic areas are 0.157 Mg km?2 and 0.118 Mg km?2, respectively. The latter two factors are probably underestimated due to omitting in the model of other dust emission mechanisms than aeolian erosion.  相似文献   

19.
The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y?1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y?1), India (90 Gg y?1) and United States (32 Gg y?1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km?2 y in the Falkland Islands to 360 kg km?2 y in Singapore with a global mean value of 3.98 kg km?2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.  相似文献   

20.
《Chemosphere》2013,90(11):1287-1294
Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra–octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono–nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2 J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States’ mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ) L−1 fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States’ mobile source on-road diesel engine inventory value of 946 pg I-TEQ L−1 fuel consumed and 1.28 pg I-TEQ L−1 fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3–4 orders of magnitude greater than modern diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号