首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Measurements on size distribution of atmospheric aerosol were made at Dayalbagh, Agra during July to September 1998. A 4-stage cascade particle sampler (CPS - 105) which fractionates particles in sizes ranging between 0.7 and >10.9 μm, was used. Samples were collected on Whatman 41 filters. The filters were analyzed for the major water-soluble ions. The anions (F, Cl, NO3 and SO4) were analyzed by Dionex DX-500 ion chromatograph while atomic absorption and colorimetric techniques were used for the analysis of cations (Na, K, Ca and Mg) and NH4, respectively. The average mass of aerosol was found to be 131.6 μg m−3 and aerosol composition was found to be influenced by terrigeneous sources. The mass size distribution of total aerosol and the ions NH4, Cl, NO3, K, Ca, Mg, SO4 and Na was bimodal while that of F was unimodal. SO4, F, K and NH4 dominated in the fine mode while Ca, Mg, Cl and NO3 were in abundance in coarse fraction. Na was found in both coarse as well as fine mode. Coarse mode SO4 and NO3 have been ascribed to contribution from re-suspension of soil and formation by heterogeneous oxidation on soil derived particles. Preponderance of K in fine mode is attributed to emissions from vegetation and from burning of plant materials. Ca, Mg, Cl and NO3 are largely soil derived and hence dominate in coarse fraction. Equivalent ratios of NH4/(SO4+NO3) were calculated for both fine and coarse aerosols. The coarse mode ratio varied between 0.7 and 1.4 while in fine mode it ranged between 1.4 and 1.9. It shows that aerosol is basic, the basicity of coarse mode is due to higher concentration of soil-derived alkaline components while the basicity in fine mode is due to neutralization of acidity by NH3.  相似文献   

2.
A quantitative single-particle analytical technique, called low-Z particle electron probe X-ray microanalysis, combined with the utilization of their morphological information on individual particles, was applied to characterize six aerosol samples collected in one Korean city, Incheon, during March 9–15, 2006. The collected supermicron aerosol particles were classified based on their chemical species and morphology on a single-particle basis. Many different particle types were identified and their emission source, transport, and reactivity in the air were elucidated. In the samples, particles in the “soil-derived particles” group were the most abundant, followed by “reacted sea-salts”, “reacted CaCO3-containing particles”, “genuine sea-salts”, “reacted sea-salts + others”, “Fe-containing particles”, “anthropogenic organics”, (NH4)2SO4, “K-containing particles”, and “fly ash”. The application of this single-particle analysis, fully utilizing their chemical compositional and morphological data of individual particles, clearly revealed the different characteristics of the six aerosol samples. For samples S3 and S5, which were sampled during two Asian dust storm events, almost all particles were of soil origin that had not experienced chemical modification and that did not entrain sea-salts during their long-range transport. For sample S1, collected at an episodic period of high PM10 concentration and haze, anthropogenic, secondary, and soil-derived particles emitted from local sources were predominant. For samples S2, S4, and S6, which were collected on average spring days with respect to their PM10 concentrations, marine originated particles were the most abundant. Sample S2 seems to have been strongly influenced by emissions from the Yellow Sea and Korean peninsula, sample S4 had the minimum anthropogenic influence among the four samples collected in the absence of any Asian dust storm event, and sample S6 seems to have entrained air pollutants that had been transported from mainland China over the Yellow Sea to Korea.  相似文献   

3.
The aging processes of two representative natural aerosol, sea-salt and mineral aerosol, are investigated by using a box model equipped with a thermodynamic module (SCAPE). The model is shown to successfully describe the aging processes between the gas-phase anthropogenic pollutants (SO2, NOx, and NH3) and primary aerosol particles, including self-neutralization process/chlorine depletion in the sea-salt aerosol; formation/dissipation of carbonate and bicarbonate ions in the mineral aerosol; irreversible dynamic deposition of SO2 and H2SO4; and reversible thermodynamic distribution of inorganic volatile species. It is found that SO2 and H2SO4 tend to deposit onto the mode with the largest surface area, and that ammonia deposition is controlled by preceding SO2/H2SO4 deposition. During the SO2/H2SO4 deposition, chloride and carbonate are continuously released from the sea-salt and mineral dust particles, respectively. The findings by the model predictions are consistent with field and observational studies.  相似文献   

4.
Rain water samples were collected during the monsoon of 1994, using automatic wet-only and manual bulk collectors at a height of 30 m above the ground at the National Physical Laboratory, New Delhi. The average pH of the rain water was 5.7 and its chemical composition was dominated by NH4 and SO4. The free acidity of the rain water was found to be due to S04 rather than N03 and it was mainly neutralized by NH4 and Ca. Calculation of sea salt fraction and enrichment factor revealed that this site is free for marine influence. On an average the bulk samples had 13% higher concentration than that of wet-only samples which may be due to the deposition of soil-derived particles during the 24 h period of exposure. The higher neutralization factors of Ca and Mg in bulk samples and highest dry deposition rates for Ca in comparison to other components, indicated the positive interference of dust particles in neutralization.  相似文献   

5.
Ten aircraft-collected cascade impactor samples from the North American Arctic were analyzed using analytical electron microscopy. Morphological, mineralogical and elemental information were obtained from individual particles, as well as compositional data and size distribution estimates of the bulk aerosol. Categorization of carbonaceous material into organic-type and combustion-type carbon particles was performed in this study. This was accomplished through the use of a new ultra-thin window X-ray spectrometer, which can directly detect carbon X-rays emitted from particles, and through interpretation of morphological and electron diffraction data. Verification of graphite as a specific carbon mineral phase present in Arctic soot particles was performed in this manner.Several classes of particles were present in most of the aerosol samples and size fractions. These included liquid H2SO4 droplets, which were always present in the highest numbers, and crustal-type and composite SO4−2 particles. A small fraction (0–30%) of a random sampling of SO2−4particles from all impactor stages were found to contain detectable nitrogen, suggesting that partial neutralization by NH3 may have occurred in this minority of the SO2−4 droplets. Particles rich in non-combustion carbon and thought to be composed of organic material were also observed in most samples. Haze samples collected off the coast of Alert, NWT, show moderate loadings of H2SO4 droplets. Judging from these loadings and those from higher-altitude samples, ambient aerosol particle concentrations must have been considerably higher in the haze. The extent to which local activity at Alert has influenced these haze samples is not known, although a major contribution is not expected. Stratospheric samples did not contain several classes of particles thought to have major anthropogenic source inputs to the Arctic, such as black carbon and coal-fired combustion spheres. The lightest particle loadings in any samples were collected in the upper troposphere near the tropopause, where condensation nuclei counts during sampling fell to as low as 10 cm−3.  相似文献   

6.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   

7.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

8.
Totally nine measurement campaigns for ambient particles and SO2 have been conducted during the period of 1997–2000 in Qingdao in order to understand the characteristics of the particulate matter in coastal areas of China. The mass fractions of PM2.5, PM2.5−10 and PM>10 in TSP are 49%, 25% and 26%, respectively. The size distribution of particles mass concentrations in Qingdao shows bi-modal distribution. Mass fraction percentages of water-soluble ions in PM2.5, PM2.5−10 and PM>10 decreased from 62% to 35% and 21%. In fine particles, sulfate, nitrate and ammonium, secondary formed compounds, are major components, totally accounting for 50% of PM2.5 mass concentration.The ratios of sulfate, chloride, ammonium and potassium in PM2.5 for heating versus non-heating periods are 1.34, 1.80, 1.56 and 1.44, respectively. The ratio of nitrate is 3.02 and this high ratio could be caused by reduced volatilization at lower temperature. Sulfate concentrations are higher than nitrate in PM2.5. The chemical forms of sulfate and nitrate are probably (NH4)2SO4 and NH4NO3 and chloride depletion was observed.Backward trajectory analysis reflected possible influence of air pollutant transport to Qingdao local aerosol pollution.  相似文献   

9.
Some studies have reported that small submicron atmospheric particles are more acidic than large submicron particles; other studies demonstrated a reversed trend. In this study, the size dependence of in situ pH in submicron particles in Hong Kong was investigated. The equivalent ratios of [NH4+]measured to [SO42−]measured in submicron particles were found to be generally less than unity and size dependent, suggesting the possibility of incomplete gas–aerosol equilibrium. The Aerosol Inorganic Model-II (AIM-II) model using measured ionic compositions with the gas–aerosol partitioning disabled was used to estimate the in situ pH in different sized particles. The estimated in situ pH of different sized submicron atmospheric particles was between −2.5 and 1.5 and it generally decreases with increasing submicron particle size. At such low in situ pH, the estimated HSO4 equivalent concentrations were 3.2 times (on average) of those of H+ in different sized particles. The trends of the size dependence of the [NH4+]measured to [SO42−]measured ratio and pH under different regimes of relative humidity are discussed.  相似文献   

10.
This work presents a gas chromatographic method that uses a thermal conductivity detector (GC-TCD) to measure the liquid water mass (LWM) of collected aerosols. The method is a modification of the previously developed EA-TCD method (Journal of Aerosol Science 29, 827). A microcomputer was incorporated into the system to control the analytical procedures, improve the measurement precision, and make possible a continuous operation. To validate the method, the aerosol LWMs of NaCl, Na2SO4, NH4NO3, (NH4)2SO4, NH4Cl, and Na2CO3 were measured at room temperature under relative humidities (RHs) varying between 20% and 90%, in both humidifying and dehumidifying conditions. Estimates of aerosol LWMs for varying aerosol chemical compositions and RHs by various measurement methods and predictive models are comprehensively compared. The comparison shows that the GC-TCD measurements agree closely with those of the other methods. The GC-TCD measurements are closer to the ISORROPIA model predictions than those of the AIM2 model. Most notably, our method determines, for the first time, the hygroscopic behavior of Na2CO3 aerosol yielding the deliquescence relative humidity and crystallization relative humidity at 78% and 39% RH, respectively. The hygroscopic characteristics of various NaCl mole fractions in mixed NaCl–Na2SO4 aerosols, determined by GC-TCD, are used to show the discrepancy between the measurements and the model's prediction.  相似文献   

11.
Atmospheric deposition is an important removal process of aerosol particles and gases from the atmosphere. To elucidate the relative contributions of wet and dry processes and in-cloud and below-cloud scavenging based on deposition amounts in winter at Mt. Tateyama, central Japan, we obtained daily samples (December, 2006–March, 2007) of size-segregated aerosol particles and precipitation at Senjyugahara (SJ; 475 m a.s.l.) and vertical samples of spring snow cover at Murododaira (MR, 2450 m a.s.l., 13 km distance from SJ) on the western flank of Mt. Tateyama. The NH4+ and nssSO42? in aerosols were mostly found in the fine fraction (<2 μm), although Na+, NO3?, and nssCa2+ were mainly detected in the coarse fraction (>2 μm). Average ionic concentrations (μg g?1) in precipitation at SJ were higher about 3.8 for Na+ and nssCa2+, 3.4 for NO3?, 3.7 for NH4+, 2.5 for nssSO42? than those at MR, whereas cumulative precipitation amounts at SJ and MR were, respectively, 84 and 175 cm of water equivalent. Wet and dry deposition amounts during the study period were estimated for sites using size-segregated aerosol data, winter averages of HNO3, NH3, and SO2 concentrations, and dry deposition velocities. Particle-dry deposition comprised about 3% (Na+) to 11% (NH4+) of the total deposition at MR. The maximum amounts of gas dry deposition were estimated, respectively, as 4, 13, and 3% of the total deposition at MR for NH4+, NO3?, and nssSO42?. The relative contributions of below-cloud scavenging (BCS) between MR and SJ were estimated as considering the wet only deposition amount at MR. Higher contributions of BCS were obtained for Na+ (56%) and nssCa2+ (45%), whereas BCSs for NH4+, NO3?, and nssSO42? were lower than 28%. Ionic constituents existing predominantly in the coarse fraction showed a large contribution of BCS.  相似文献   

12.
Marine background levels of non-sea-salt- (nss-) SO42− (5.0–9.7 neq m−3), NH4+ (2.1–4.4 neq m−3) and elemental carbon (EC) (40–80 ngC m−3) in aerosol samples were measured over the equatorial and South Pacific during a cruise by the R/V Hakuho-maru from November 2001 to March 2002. High concentrations of nss-SO42− (47–94 neq m−3), NH4+ (35–94 neq m−3) and EC (130–460 ngC m−3) were found in the western North Pacific near the coast of the Asian continent under the influence of the Asian winter monsoon. Particle size distributions of ionic components showed that the equivalent concentrations of nss-SO42− were balanced with those of NH4+ in the size range of 0.06<D<0.22 μm, whereas the concentration ratios of NH4+ to nss-SO42− in the size range of D>0.22 μm were decreased with increase in particle size. We estimated the source contributions of those aerosol components in the marine background air over the equatorial and South Pacific. Biomass burning accounted for the large fraction (80–98% in weight) of EC and the minor fraction (2–4% in weight) of nss-SO42−. Marine biogenic source accounted for several tens percents of NH4+ and nss-SO42−. In the accumulation mode, 70% of particle number existed in the size range of 0.1<D<0.2 μm. In the size rage of 0.06<D<0.22 μm, the dominant aerosol component of (NH4)2SO4 would be mainly derived from the marine biogenic sources.  相似文献   

13.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

14.
Two-stage aerosol samples (PM10–2.5 and PM2.5) were collected at a coastal rural site located in the northeastern Mediterranean, between April 2001 and 2002. A total of 562 aerosol samples were analyzed for trace elements (Fe, Ti, Mn, Ca, V, Ni, Zn, Cr) and water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl, Br, NO3, SO42−, C2O42− and MS:methane sulfonate). PM10, crustal elements, sea salt aerosols and NO3 were mainly associated with the coarse mode whereas non-sea salt (nss)SO42−, C2O42−; MS, NH4+, Cr and Ni were found predominantly in the fine fraction. Concentrations of aerosol species exhibited orders of magnitude change from day to day and the aerosol chemical composition is heavily affected by dust events under the influence of airflow from North Africa. During the sampling period, 11 specific mineral dust events of duration varying from 1 day to a week have been identified and their influence on the chemical composition of aerosols has been studied in detail. Ionic balance analysis performed in the coarse and fine aerosol fractions indicated anion and cation deficiency due to CO32− and H+, respectively. A relationship between nssSO42− and NH4+ denoted that sulfate particles were partially neutralized (70%) by ammonium. Excess-K/BC presented two distinct ratios for winter and summer, indicating two different sources: fossil fuel burning in winter and biomass burning in summer.  相似文献   

15.
The sampling and chemical analysis of the ambient aerosol collected in Denver, CO, for a 40-day period during November and December, 1978 are described in this report. Parameters included 12-hr TSP measurements, 24-hr respirable and inhalable mass measurements, and 4-hr measurements of mass and chemical species (NO3?, SO4 =, NH4 +, organic and elemental carbon as well as 13 chemical elements) in two size fractions i.e., less than 2.5 μm diameter (fine fraction) and larger than 2.5 μm diameter (coarse fraction). On the basis of the chemical analyses, it was possible to account for all particulate mass in both size fractions. In the fine fraction, the major constituents were organic carbon (21.6%), NH4NO3 (20.0%), elemental carbon (15.3%), (NH4)2SO4 (13.6%), and the remainder consisted primarily of soil-like material, lead salts, and adsorbed water. Three quarters of the coarse fraction consisted of soil-like material, with the remainder composed of the same species that dominated the fine fraction.  相似文献   

16.
Abstract

Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles ≤2.5 µm in aerodynamic diameter) samples (PM2.5 ), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 µm in aerodynamic diameter) samples (PM10–2.5 ). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4 2?-rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO3 ?-rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4 2?-rich and NO3 ?-rich secondary aerosols were associated with NH4 +. The SO4 2?-rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO3 ?-rich secondary aerosol (16%), SO4 2?-rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

17.
The influence of soluble compounds leached from real atmospheric aerosol particles (size range Dae: 0.17–1.6 μm) and dissolved NO2 on S(IV) oxidation in aqueous solution is presented. Experiments were conducted with aerosol particles of two different origins (i.e., urban and industrial) and at concentrations of trace gases in the gas mixtures (SO2/air and SO2/NO2/air) typical for a polluted atmosphere. During the introduction of SO2/air into the aqueous aerosol suspensions under dark conditions at pH 4, the formation of SO42− was very slow with a long induction period. However, in the presence of NO2 the oxidation rate of dissolved SO2 in suspensions of aerosols from both origins increased substantially (about 10 times). The results suggest that soluble compounds eluted from atmospheric aerosols have not only a catalytic (e.g. Fe, Mn), but also a pronounced inhibiting effect (e.g., oxalate, formate, acetate, glycolate) on S(IV) autoxidation. When NO2 was also introduced into the aerosol suspensions, the inhibition was not so highly expressed. An explanation for this is that the radical chain mechanism is mainly initiated by the interaction of dissolved NO2 and HSO3. Therefore, at conditions typical for a polluted atmosphere dissolved NO2 can have a significant influence on the secondary formation of SO42−.  相似文献   

18.
To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3–3.8 μg m?3), in which NH4+ is the major species (78%) with lesser contribution from NO3? (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.  相似文献   

19.
The effects of (NH4)2SO4, NH4NO3, NaCl, NH4Cl, and Na2SO4 aerosols on the kinetics of 1-propanol oxidation in the presence of the hydroxyl radical have been investigated using the relative rate technique. p-Xylene was used as a reference compound. Two different aerosol concentrations that are typical of polluted urban conditions were tested. The total surface areas of aerosols were 1400 (condition I) and 3400 μm2 cm−3 (condition II). Results indicate that aerosols promote the oxidation of 1-propanol, and the extents of the promoting effects depend on the aerosol composition and concentration. Increases in the relative rates of the 1-propanol/OH reaction vs. the p-xylene/OH reaction were only observed for (NH4)2SO4 aerosol conditions I and II, NH4NO3 aerosol condition II, and NH4Cl aerosol condition II. These results indicate that NH4+ is the species promoting the oxidation of 1-propanol, and suggests the possibility of a strong interaction between NH4+ and 1-propanol that can change the activation energy of the initial OH attack. These results have profound implications on the use of air quality models for the assessment of air pollution control strategies.  相似文献   

20.
The hygroscopic behaviour of NaCl, (NH4)2SO4, Na2SO4 and NH4NO3 particles in the size range of 0.1–20 μm was studied by environmental scanning electron microscopy (ESEM). This technique allows the in-situ observation of individual aerosol particles while changing the temperature and/or relative humidity (RH) in the sample chamber. The hygroscopic behaviour of these particles (e.g., deliquescence, adsorption of water on the particle surface) becomes directly observable with a lateral resolution of the order of 8–15 nm. The deliquescence relative humidities (DRH) of the different salts, the temperature dependence of the DRH for NH4NO3, and the growth factors (at increasing relative humidities) for NaCl were determined. Generally, a good agreement between the values obtained by ESEM and those found in literature was achieved. However, the DRH of NaCl determined by ESEM is systematically higher (approximately 2%, absolute) than the values obtained by other techniques, which can be explained by the observed strong absorption of water onto the crystal surface prior to droplet formation. The efflorescence behaviour of individual particles can be studied only qualitatively due to influences of the sample substrate. Furthermore, it is demonstrated that the activation of soot can be studied at high resolution by ESEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号