首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A detailed comparative trial of passive diffusion tubes (PDT) for measurement of NO2 in urban air has been undertaken in Edinburgh, UK. Acrylic, foil-wrapped and quartz tubes were exposed in parallel for 1-week and 4-week periods at three urban sites equipped with continuous analysers for NO, NOx and O3. Standard acrylic PDTs significantly overestimated NO2 concentrations relative to chemiluminescence analysers, by an average of 27% over all sites for 1-week exposures. No significant difference was observed between standard and foil-wrapped acrylic tubes (both UV blocking). The mean ratio between quartz (UV transmitting) tubes and chemiluminescence analysers was 1.06. Quartz PDT data suggest a tendency for in situ photolysis to offset (but in a non-quantifiable way) the effect of chemical overestimation. The 4-week exposures yielded systematically lower NO2 concentration than average NO2 from four sequential 1-week exposures over the same period. The reduction in the apparent NO2 sampling rate with time mostlikely arises from in situ photolysis of trapped NO2. Hourly NO2, NO and O3 data for 20 1-week exposures were used as input to a numerical model of diffusion tube operation incorporating chemical reaction between co-diffusing NO and O3 within the tube. The mean calculated overestimation of 22% for NO2 from the PDT model simulations is close to the average difference between acrylic PDT and analyser NO2 concentrations (24% for the same exposure periods), showing that within-tube chemistry can account for observed discrepancies in NO2 measurement between the two techniques. Overestimation by PDT generally increased as average NO2/NOx ratios decreased. Accurate quantitative correction of PDT measurements is not possible. Nevertheless, PDT NO2 concentrations were correlated with both analyser NO2 and NOx suggesting that acrylic PDTs retain a qualitative measure of NO2 and NOx variation at a particular urban location.  相似文献   

2.
Abstract

A badge-type passive monitor was used to evaluate the effectiveness of four ozone trapping reagents for measuring O3 concentrations in the air. These were sodium nitrite (NaNO2), 3-methyl-2-benzothiazolinone acetone azine (MBTH), p-acetamidophenol (p-ATP), and indigo carmine. Experiments in an exposure chamber showed that only NaNO2 and MBTH monitors gave sensitive and linear responses over realistic ranges of O3 concentrations. When tested in ambient air, NaNO2 and MBTH monitors with a single-layer diffusion barrier overestimated O3 concentrations by a significant amount. This was largely canceled out in the NaNO2 monitor by using a multi-layered diffusion barrier to combat wind turbulence effects. However it had almost no effect on the MBTH monitor, and it was found that NO2 was a source of serious interference. We concluded that using the NaNO2 monitor with an effective diffusion barrier can measure O3 in ambient air with an accuracy of ±16%.  相似文献   

3.
Measurement of ambient NO2 concentrations using diffusion tube samplers is widespread in many countries, particularly in the UK. A National Network of NO2 diffusion tube samplers has been operational at over 1200 sites in the UK for over 5 years. Some previous studies have indicated that NO2 diffusion tube samplers may overestimate NO2 concentrations by up to 30%, whereas others have shown an underestimation. Hence, the UK Department of Environment, Transport and the Regions commissioned this large-scale validation study. In this study diffusion tubes were exposed at 17 urban background monitoring sites equipped with chemiluminescent NO2 monitors within the UK Automatic Urban Monitoring Network. Over a one year period, diffusion tubes were exposed for 2- and 4-week periods, blacked out or clear and sheltered (from the wind) or unsheltered, in order to investigate the effect of a number of possible variables. The results of the study show that overall average NO2 concentrations calculated from diffusion tube measurements are likely to be within 10% of chemiluminescent measurement data. The uncertainty on this average difference is ±24–38% for individual diffusion tube measurements, but reduces to ±10–18% for annual averages. Differences due to the exposure period and exposure procedure were found, but these were not large.  相似文献   

4.
Non-methane organic carbon (NMOC) measurements made in Atlanta, Georgia from 1999–2007 are used with nitrogen oxide (NOx or NOy) and ozone (O3) data to investigate relationships between O3 precursors and peak 8-hour O3 concentrations in the city. Data from a WNW-to-ENE transect of sites illustrate that the mean urban peak 8-hour O3 excess constitutes about 20% of the peak 8-hour O3 measured at the area-wide maximum O3 site when air-mass movement is from the northwest quadrant; local influence is potentially greater on days with more stagnation or recirculation. The peak 8-hour O3 concentrations in Atlanta increase as (1) surface temperature (T), ambient NMOC and NOy concentrations, and previous-day peak O3 concentrations increase, and as (2) relative humidity, surface wind speeds, and ratios of NMOC-to-NOy decrease. An observation-based statistical model is introduced to relate area-wide peak 8-hour O3 concentrations to ambient NMOC and NOy concentrations, while accounting for the non-linear dependences of peak 8-hour O3 concentrations on meteorological factors. On the majority of days when the area-wide peak 8-hour O3 exceeds 75 ppbv, meteorologically-adjusted peak 8-hour O3 concentrations increase as ambient NMOC concentrations increase (NMOC sensitive) and ambient NOy concentrations decrease. This result contrasts with regional conditions in which O3 formation appears to be NOx-sensitive in character. The results offer observationally-based information of relevance to O3 management strategies in the Atlanta area, potentially contributing to “weight-of-evidence” assessments.  相似文献   

5.
Data on CO, NO, NO2 and O3 concentrations measured in Buenos Aires city using a continuous monitoring station are reported. This is the first systematic study of this kind carried out in the city, which is, together with its surroundings, the third more populated in Latin America. Measurements were performed during 12 months in one of the principal avenues near downtown. Results indicate that vehicular traffic is the principal source of CO and NOx. The concentration of O3 is generally quite low and results from the mixing of clean air masses with exhaust gases containing high amounts of NO. The monthly averages of CO and NO decrease from Winter to Summer in correlation with the increase of the mean wind speed and average temperature. These results are compared with previous measurements on the spatial distribution of NO2 in the whole city using passive diffusion tubes and with the concentration of CO, which is being continuously registered since several years in the downtown area. Measurements performed at a green, windy, low traffic area beneath the La Plata river are also shown.  相似文献   

6.
A field measurement campaign was conducted near a major road in southern Finland from September 15 to October 30, 1995. The concentrations of NO, NO2 and O3 were measured simultaneously at three locations, at three heights (3.5, 6 and 10 m) on both sides of the road. Traffic densities and relevant meteorological parameters were also measured on-site. We have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI, used in combination with a meteorological pre-processing model MPP-FMI. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted datasets was good, as measured using various statistical parameters. For all data (N=587), the index of agreement (IA) was 0.83, 0.82 and 0.89 for the measurements of NOx, NO2 and O3, respectively. The IA is a statistical measure of the correlation of the predicted and measured time series of concentrations. However, the modelling system overpredicts NOx concentrations with a fractional bias FB=+13%, and O3 concentrations with FB=+8%, while for NO2 concentrations FB=−2%. We also analyzed the difference between model predictions and measured data in terms of meteorological parameters. Model performance clearly deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. The range of variability concerning atmospheric stability, ambient temperature and the amount of solar radiation was modest during the measurement campaign. As expected, no clear dependencies of model performance were therefore detected in terms of these parameters. The experimental dataset is available for the evaluation of other roadside dispersion models.  相似文献   

7.
Measurements of O3, NO, NO2, and NOy mixing ratios were carried out at a station-Dinghushan in Guangdong province of China from Oct. 18th, 2008 to Nov. 7th, 2008. This research shows that under conditions of a strong subtropical high (temperature high, relative humidity low), on Oct. 29th, 2008 the Dinghushan station observed severe photochemical pollution. The Maximum hour average concentration of O3 reached 128 ppbv, and the serious photochemical pollution is caused by superposition of local photochemical reaction and regional transport. The observation that NOx ozone production efficiency (OPE) values for high O3 pollution on Oct. 29–30th, 2008 were 10.5 and 15, which were more than the values of the city source region and lower than that of the surrounding clean areas. It means the sensitivity of O3 generated was transitioning from VOCs limited condition to NOx-limited regime. By applying a Smog Production Model, the results show that the extent of reaction values less than 0.6 were occurred on 17 days during campaign, and 13 days for the extents of reactions more than 0.6. However, there were no data with values over 0.8, which indicates that the observation station represent a VOCs sensitive system during campaign. Analysis of the extents of reactions and wind data show that the pollution is mostly subject to a southeasterly airflow influence.  相似文献   

8.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

9.
The observed ranges in nonmethane organic compound (NMOC) concentrations, NMOC composition and nitrogen oxides (NOX) concentrations have been evaluated for urban and nonurban areas at ground level and aloft of the contiguous United States. The ranges in NMOC to NOX ratios also are considered. The NMOC composition consistently shifts towards less reactive compounds, especially the alkanes, in air parcels over nonurban areas compared to the NMOC composition near ground level within urban areas. The values for the NMOC to NOX ratios, 1.2 to 4.2, in air aloft over nonurban areas are lower than in air at ground level urban sites, ≥8, and much lower than in air at ground level nonurban sites, ≥20.

The layers of air aloft over a number of nonurban areas of the United States tend to accumulate NOX emissions from the tall stacks of large fossil fuel power plants located at nonurban sites. During the night into the morning hours, the air aloft is isolated from any fresh NMOC emissions predominately coming from near surface sources. Conversely, during this extended period of restricted vertical mixing, air near the surface accumulates NMOC emissions while this air is isolated from the major NOX sources emitting aloft. These differences in the distribution of NMOC and NOX sources appear to account for the much larger NMOC to NOX ratios reported near ground level compared to aloft over nonurban areas.

Two types of experimental results are consistent with these conclusions: (1) observed increases in surface rural NOX concentrations during the morning hours during which the mixing depth increases to reach the altitude at which NOX from the stacks of fossil fuel power plants is being transported downwind; (2) high correlations of total nitrate at rural locations with Se, which is a tracer for coal-fired power plant NOX emissions.

The implications of these conclusions from the standpoint of air quality strategies are suggested by use of appropriate scenarios applied to both urban and regional scale photochemical air quality models. The predictions from urban model scenarios with NMOC to NOX ratios up to 20 are that NOX control will result in the need for the control of more NMOC emissions than necessary in the absence of NOX control, in order to meet the O3 standard. On a regional scale, control of NOX emissions from fossil fuel power plants has little overall effect regionally but does result on a more local scale in both small decreases and increases in O3 concentrations compared to the baseline scenario without NOX control. The regional modeling results obtained to date suggest that NOX control may be effective in reducing O3 concentrations only for a very limited set of conditions in rural areas.  相似文献   

10.
The 1990 Clean Air Act Amendments require states with O3 nonattainment areas to adopt regulations to enforce reasonable available control technologies (RACT) for NOX stationary sources by November 1992. However, if the states can demonstrate that such measures will have an adverse effect on air quality, NOX requirements may be waived. To assist the states in making this decision, the U.S. EPA is attempting to develop guidelines for the states to use in deciding whether NOX reductions will have a positive or negative impact on O3 air quality. Although NOX is a precursor of O3, at low VOC/NOX ratios, the reduction of NOX can result in increased peak O3. EPA is examining existing information on VOC/NOX ratios to develop “rules of thumb” to guide the states in their decision-making process. An examination of 6 a.m. to 9 a.m. VOC/NOX ratios at a number of sites in the eastern U.S. indicates that the ratio is highly variable from day-to-day and there is no apparent relationship between ratios measured at different sites within the same area. In addition, statistical analysis failed to identify significant relationships between the 6 a.m. to 9 a.m. VOC/NOX ratio and the maximum 1-hr. O3 within a given area. Since we know from smog chamber and modeling studies that such a relationship exists, this further invalidates the assumption that a ratio measured at a single site is representative of the ratio for the entire region. Based on this Information, we conclude that having the 6 a.m. to 9 a.m. ambient VOC/NOX ratio for a given area is insufficient information, by itself, to decide whether a VOC-alone, a NOx-alone, or a combined VOC-NOX reduction strategy is a viable or optimum O3-reduction strategy.  相似文献   

11.
The results of one year's measurements (typically a two week sampling campaign in each season) of the concentrations of eight major water soluble ions, namely Na+, NH4+, K+, Mg2+, Ca2+, Cl, NO3 and SO42−, in atmospheric aerosols collected in three New Zealand cities (Auckland, Christchurch and Hamilton) are presented. The data has provided important information on particulate soluble ion profiles in New Zealand urban areas and revealed some useful trends.A significant correlation has been found between the average meteorological conditions in a sampling campaign and the average particulate concentrations of some of these soluble ions in the campaign. For example, average particulate NO3 concentration in a campaign was found to correlate well with the average calm or weak wind duration percentage in the campaign, and the average concentrations of Na+, Mg2+ and Cl related closely to the average wind pattern and rainfall in the campaign.Significant site and seasonal variations have been observed with Hamilton having the lowest overall concentrations of all the soluble ions in the particles sampled. On average all sites had the highest particulate concentrations of Na+, Mg2+ and Cl in the summer but the highest particulate concentrations of NH4+ and non-sea-salt Ca2+ (nss-Ca2+) in the winter. The possible sources of PM10 mass have been deduced and in particular the relative contribution of sea salts to PM10 mass in the cities are reported.  相似文献   

12.
Nighttime measurements of aerosol surface area, O3, NOy and moisture were made downwind of Portland, Oregon, as part of a study to characterize the chemistry in a nocturnal urban plume. Air parcels sampled within the urban plume soon after sunset had positive correlations between O3, relative humidity, NOy and aerosol number density. However, the air parcels sampled within the urban plume just before dawn had O3 mixing ratios that were highly anti-correlated with aerosol number density, NOy and relative humidity. Back-trajectories from a mesoscale model show that both the post-sunset and pre-dawn parcels came from a common maritime source to the northwest of Portland. The pre-dawn parcels with strong anti-correlations passed directly over Portland in contrast to the other parcels that were found to pass west of Portland. Several gas-phase mechanisms and a heterogeneous mechanism involving the loss of O3 to the aerosol surface, are examined to explain the observed depletion in O3 within the pre-dawn parcels that had passed over Portland.  相似文献   

13.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

14.
The MiniVOL sampler is a popular choice for use in air quality assessments because it is portable and inexpensive relative to fixed site monitors. However, little data exist on the performance characteristics of the sampler. The reliability, precision, and comparability of the portable MiniVOL PM10 and PM2.5 sampler under typical ambient conditions are described in this paper. Results indicate that the MiniVOL (a) operated reliably and (b) yielded statistically similar concentration measurements when co-located with another MiniVOL (r2=0.96 for PM10 measurements and r2=0.95 for PM2.5 measurements). Thus, the characterization of spatial distributions of PM10 and PM2.5 mass concentrations with the MiniVOL can be accomplished with a high level of confidence. The MiniVOL also produced statistically comparable results when co-located with a Dichotomous Sampler (r2=0.83 for PM10 measurements and r2=0.85 for PM2.5 measurements) and a continuous mass sampling system (r2=0.90 for PM10 measurements). Environmental factors such as ambient concentration, wind speed, temperature, and humidity may influence the relative measurement comparability between these sampling systems.  相似文献   

15.
In 1997, a measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki. Hourly mean concentrations of CO, NOx, NO2 and O3 were measured at street and roof levels, the latter in order to determine the urban background concentrations. The relevant hourly meteorological parameters were measured at roof level; these included wind speed and direction, temperature and solar radiation. Hourly street level measurements and on-site electronic traffic counts were conducted throughout the whole of 1997; roof level measurements were conducted for approximately two months, from 3 March to 30 April in 1997. CO and NOx emissions from traffic were computed using measured hourly traffic volumes and evaluated emission factors. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx (fractional bias were −4.2 and +4.5%, respectively), but the model overpredicted the measured NO2 concentrations (fractional bias was +22%). The agreement between the measured and predicted values was also analysed in terms of its dependence on wind speed and direction; the latter analysis was performed separately for two categories of wind velocity. The model qualitatively reproduces the observed behaviour very well. The database, which contains all measured and predicted data, is available for further testing of other street canyon dispersion models. The dataset contains a larger proportion of low wind speed cases, compared with other available street canyon measurement datasets.  相似文献   

16.
The concentrations of air pollutants such as nitrogen oxides and ozone characterised by very fast chemical reactions can significantly vary within urban street-canyon due to the short distances between sources and receptor. With the primary objective to analyse this issue, NO, NO2, NOx, O3, BTX, and wind flow field were continuously measured for 1 week at two heights (a street-level yard and a 25-m-high rooftop) in an urban canyon in Suzhou (China). The yard ozone concentrations were found to be up to six times lower than on the roof. Different frequency distributions (FD), dynamical and chemical processes of the pollutant variations from yard to roof are discussed to explain the findings. The predominant factors for the dissimilar pollutant vertical diffusion at the two measurement locations were associated to dissimilar fluid-dynamic and heterogeneous removal effects that likely induced dissimilar ozone chemical processes relative to NOx and BTX precursors.  相似文献   

17.
A new sampling device is described for the simultaneous collection of NH3, HNO3, HCl, SO2 and H2O2 in ambient air. The apparatus is based on air sampling by two parallel annular denuder tubes. The gases are collected by absorption in solutions present in the annulus of the denuder tubes. After a sampling time of 30 min at flow rate of 32 ℓ min−1 the solutions are extracted from the denuders and analyzed off-line. The detection limits of NH3, HNO3, HCL and SO2 are in the order of 0.1–0.5 μm−3. For H2O2 the detection limit is 0.01 μm−3. The reproducibility is 5–10% at the level of ambient air concentrations. Comparison of this novel technique with existing methods gives satisfactory results. The compact set-up offers the possibility of field experiments without the need of extensive equipment.  相似文献   

18.
Laboratory and field experiments were performed to evaluate integrative measurement methods for atmospheric nitrates, sulphate and sulphur dioxide. Denuder tubes and several filter media were tested under laboratory and field conditions. Effects of sampling variables such as temperature and relative humidity, flow rates, concentration, loading capacity and artifacts due to NO, NO2 and SO2 were also evaluated. The integrative filter sampling method and the ion chromatographic analytical procedure gave a measurement precision (relative standard deviation) of ±11.5 percent for particulate NO3 ? on Teflon and ±15.6 percent for gaseous HNO3 on nylon; for both these constituents, the detection limit was about 0.1 μ m?3.  相似文献   

19.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

20.

Introduction

This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O3) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons.

Methods

Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O3 concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO2), and O3 (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004.

Results and discussion

Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O3 regimes were temperature, CO and NO2 concentrations, due to their importance in O3 chemistry in an urban atmosphere.

Conclusion

In the prediction of O3 concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号