首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

2.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

3.
The effect of sulfur content on diesel particulate matter (DPM) emissions was studied using a diesel generator (Generac Model SD080, rated at 80 kW) as the emission source to simulate nonroad diesel emissions. A load simulator was used to apply loads to the generator at 0, 25, 50, and 75 kW, respectively. Three diesel fuels containing 500, 2100, and 3700 ppm sulfur by weight were selected as generator fuels. The U.S. Environmental Protection Agency sampling Method 5 "Determination of Particulate Matter Emissions from Stationary Sources" together with Method 1A "Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts" was adopted as a reference method for measurement of the exhaust gas flow rate and DPM mass concentration. The effects of various parameters on DPM concentration have been studied, such as fuel sulfur contents, engine loads, and fuel usage rates. The increase of average DPM concentrations from 3.9 mg/Nm3 (n cubic meter) at 0 kW to 36.8 mg/Nm3 at 75 kW is strongly correlated with the increase of applied loads and sulfur content in the diesel fuel, whereas the fuel consumption rates are only a function of applied loads. An empirical correlation for estimating DPM concentration is obtained when fuel sulfur content and engine loads are known for these types of generators: Y = Zm(alphaX + beta), where Y is the DPM concentration, mg/m3, Z is the fuel sulfur content, ppm(w) (limited to 500-3700 ppm(w)), X is the applied load, kW, m is the constant, 0.407, alpha and beta are the numerical coefficients, 0.0118 +/- 0.0028 (95% confidence interval) and 0.4535 +/- 0.1288 (95% confidence interval), respectively.  相似文献   

4.
The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography–mass spectrometry (GC–MS) methodology.Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5–25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed.The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.  相似文献   

5.
To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994--2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles--rolloffs, and front-end, rear, and side loaders--and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with approximately 50-90% achieving the required regeneration temperatures. Only 8-25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.  相似文献   

6.
Abstract

To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994–2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles—roll-offs, and front-end, rear, and side loaders—and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with ~50–90% achieving the required regeneration temperatures. Only 8–25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.  相似文献   

7.
NOx, nitrate and sulphate emissions from a typical European passenger car diesel engine have been measured testing eight different fuels under five steady operating conditions (reproducing modes of the European transient urban/extraurban certification cycle). It is confirmed that nitrogen species compete with sulphur compounds to be adsorbed by diesel particulate matter (DPM) before being emitted into the atmosphere. This competition is found to increase with engine load, and is explained on the basis of the different specific surface and adsorption capacity of soot particles under different operating modes. When a high specific surface is available, as occurs in low load modes, both nitrates and sulphates are adsorbed by soot particles. On the contrary when a small surface is accessible, like in high load modes, sulphates are selectively adsorbed. This is specially important since sulphates are responsible for hydrocarbon retention in DPM due to the scrubbing effect.  相似文献   

8.
This paper is part of the Journal of the Air & Waste Management Association's 2010 special issue on combustion aerosol measurements. The issue is a combination of papers that synthesize and evaluate ideas and perspectives that were presented by experts at a series of workshops sponsored by the Coordinating Research Council that aimed to evaluate the current and future status of diesel particulate matter (DPM) measurement. Measurement of DPM is a complex issue with many stakeholders, including air quality management and enforcement agencies, engine manufacturers, health experts, and climatologists. Adoption of the U.S. Environmental Protection Agency 2007 heavy-duty engine DPM standards posed a unique challenge to engine manufacturers. The new standards reduced DPM emissions to the point that improvements to the gravimetric method were required to increase the accuracy and the sensitivity of the measurement. Despite these improvements, the method still has shortcomings. The objectives of this paper are to review the physical and chemical properties of DPM that make gravimetric measurement difficult at very low concentrations and to review alternative metrics and methods that are potentially more accurate, sensitive, and specific. Particle volatility, size, surface area, and number metrics are considered, as well as methods to quantify them. Although the authors believe that an alternative method is required to meet the needs of engine manufacturers, the methods reviewed in the paper are applicable to other areas where the gravimetric method detection limit is approached and greater accuracy and sensitivity are required. The paper concludes by suggesting a method to measure active surface area, combined with a method to separate semi-volatile and solid fractions to further increase the specificity of the measurement, has potential for reducing the lower detection limit of DPM and enabling engine manufacturers to reduce DPM emissions in the future.  相似文献   

9.
The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.  相似文献   

10.
Abstract

This paper is part of the Journal of the Air & Waste Management Association’s 2010 special issue on combustion aerosol measurements. The issue is a combination of papers that synthesize and evaluate ideas and perspectives that were presented by experts at a series of workshops sponsored by the Coordinating Research Council that aimed to evaluate the current and future status of diesel particulate matter (DPM) measurement. Measurement of DPM is a complex issue with many stakeholders, including air quality management and enforcement agencies, engine manufacturers, health experts, and climatologists. Adoption of the U.S. Environmental Protection Agency 2007 heavy-duty engine DPM standards posed a unique challenge to engine manufacturers. The new standards reduced DPM emissions to the point that improvements to the gravimetric method were required to increase the accuracy and the sensitivity of the measurement. Despite these improvements, the method still has shortcomings. The objectives of this paper are to review the physical and chemical properties of DPM that make gravimetric measurement difficult at very low concentrations and to review alternative metrics and methods that are potentially more accurate, sensitive, and specific. Particle volatility, size, surface area, and number metrics are considered, as well as methods to quantify them. Although the authors believe that an alternative method is required to meet the needs of engine manufacturers, the methods reviewed in the paper are applicable to other areas where the gravi-metric method detection limit is approached and greater accuracy and sensitivity are required. The paper concludes by suggesting a method to measure active surface area, combined with a method to separate semi-volatile and solid fractions to further increase the specificity of the measurement, has potential for reducing the lower detection limit of DPM and enabling engine manufacturers to reduce DPM emissions in the future.  相似文献   

11.
To obtain the characteristic factors or signatures of particulate polycyclic aromatic hydrocarbons (PAHs) to help identify the sources of particulate PAHs in the atmosphere, different carbonaceous aerosols were generated by burning different fossil fuels and biomass under different conditions in the laboratory, and the chemical characteristics of 14 PAHs were studied in detail. The results showed that (1) carbonaceous aerosols derived from domestic burning of coal, diesel fuel, and gasoline have much higher concentrations of PAHs than those derived from domestic burning of biomass; (2) carbonaceous aerosols derived from domestic burning of diesel fuel/gasoline have similar PAH components as those derived from high-temperature combustion of diesel fuel/gasoline, although the former have much higher concentrations of PAHs than the latter, suggesting that the burning temperature obviously affects the emitting amount of particulate PAHs, but only slightly influences the PAHs components; and (3) the ratios of benzo[b]fluoranthene/acenaphthylene, benzo[b]fluoranthene/fluorene, dibenzo[a,h]anthracene/acenaphthylene, dibenzo[a,h]anthracene/fluorine, and benzo[b]fluoranthene/benzo[k]fluoranthene in carbonaceous aerosols are sensitively dependent on their sources, indicating that these ratios are suitable for use as characteristic factors or signatures of particulate PAHs in the atmosphere.  相似文献   

12.
Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.  相似文献   

13.
The use of biodiesel fuel as a substitute for fossil fuel in diesel engines has received increasing attention in recent years. This study is the first to investigate and compare the characteristics of mutagenic species, trans,trans-2,4-decadienal (tt-DDE), and polycyclic aromatic hydrocarbons (PAHs) in the diluted exhaust of diesel engines operated with diesel and biodiesel blend fuels. An engine of current design was operated on a dynamometer consistent with the US federal test procedure transient-cycle specifications. Petroleum diesel and a blend of petroleum diesel and biodiesel (B20) were tested. Exhaust sampling was carried out on diluted exhaust in a dilution tunnel with a constant-volume sampling system. Concentrations of tt-DDE and PAHs were analyzed by GC/MS. Although average PAH emission factors decreased from 1403 to 1051 μg bhp-h−1, the results show that tt-DDE is evidently generated (1.28 μg bhp-h−1) in the exhaust of diesel engine using B20 as fuel. This finding suggests that tt-DDE emission from the use of biodiesel should be taken into account in characterization and health-risk assessment. The results also show that tt-DDE is depleted in the diesel engine combustion process and the existence of tt-DDE in biodiesel is the major source of tt-DDE emission. The distribution of tt-DDE in the particulate phase is 55.3% under this study's sampling conditions. For diesel and B20, PAH phase distributions have similar trends. Lower molecular weight PAHs predominate in gaseous phase for both diesel and B20. Cold-start driving has higher tt-DDE and PAH emission factors, as well as a higher percentage of tt-DDE in particulate phase, than for warm-start driving.  相似文献   

14.
The effects of a zeolite urea-selective catalytic reduction (SCR) aftertreatment system on a comprehensive spectrum of chemical species from diesel engine emissions were investigated in this study. Representative samples were collected with a newly developed source dilution sampling system after an aging process designed to simulate atmospheric dilution and cooling conditions. Samples were analyzed with established procedures and compared between the measurements taken from a baseline heavy-duty diesel engine and also from the same engine equipped with the exhaust aftertreatment system. The results have shown significant reductions for nitrogen oxides (NOx), carbon monoxide, total hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and organic carbon (OC) emissions. Additionally, less significant yet notable reductions were observed for particulate matter mass and metals emissions. Furthermore, the production of new species was not observed with the addition of the zeolite urea-SCR system joined with a downstream oxidation catalyst.  相似文献   

15.
In total, 24 polycyclic aromatic hydrocarbons (PAHs) in both gas and particle phases and 35 nitro-PAHs in particle phase were analyzed in the exhaust from heavy-duty diesel vehicles equipped with after-treatment for particulate matter (PM) and NOX control. The test vehicles were carried out using a chassis dynamometer under highway cruise, transient Urban Dynamometer Driving Schedule (UDDS), and idle operation. The after-treatment efficiently abated more than 90% of the total PAHs. Indeed, the particle-bound PAHs were reduced by >99%, and the gaseous PAHs were removed at various extents depending on the type of after-treatment and the test cycles. The PAHs in gas phase dominated the total PAH (gas + particle phases) emissions for all the test vehicles and for all cycles; that is, 99% of the two-ring and 98% of the three-ring and 97% of the four-ring and 95% of the carcinogenic PAHs were in the gas-phase after a diesel particle filter (DPF) and not bound to the very small amount of particulate matter left after a DPF. Consequently, an evaluation of the toxicity of DPF exhaust must include this volatile fraction and cannot be based on the particle fraction only. The selective catalytic reduction (SCR) did not appear to promote nitration of the PAHs in general, although there might be some selective nitration of phenanthrene. Importantly the after-treatmtent reduced the equivalent B[a]P (B[a]Peq) emissions by >95%, suggesting a substantial health benefit.

Implications: This study demonstrated that after-treatments, including diesel particulate filters (DPF), diesel oxidation catalysts (DOC), and selective catalytic reduction (SCR), significantly reduce the emissions of PAHs from heavy-duty diesel engines. The gas-phase PAHs dominate the total PAH (gas + particle phases) emissions from heavy-duty diesel vehicles retrofitted with various DPFs and not bound to the very small amount of particulate matter left after a DPF. Consequently, an evaluation of the toxicity of DPF exhaust must also include this volatile fraction and cannot be based on the particle fraction only.

Supplemental Materials: Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

16.
The chemical speciation of the 16 polycyclic aromatic hydrocarbons associated to the particulate matter of conventional diesel fuel, rapeseed methyl esters, waste cooking oil methyl esters, waste cooking oil ethyl esters and their conventional fuel blends has been carried out. The speciation of these individual compounds was made by a combination of thermal extraction, solid phase micro-extraction and GC/MS analysis. This PAH speciation method was applied to a real samples obtained from a diesel engine under two different operating modes, urban and extraurban modes. The purpose of this work was to study the relationship between the amount, type and carcinogenic potency of polycyclic aromatic hydrocarbons in engine emissions and the multi-component biodiesel fuel composition.  相似文献   

17.
Three diesel fuels, one oil sand-derived (OSD) diesel serving as base fuel, one cetane-enhanced base fuel, and one oxygenate [diethylene glycol dimethyl ether (DEDM)]-blended base fuel, were tested for their emission characterizations in vehicle exhaust on a light-duty diesel truck that reflects the engine technology of the 1994 North American standard. Both the cetane-enhanced and the oxygenate-blended fuels were able to reduce regulated [CO, particulate matter (PM), total hydrocarbon (THC)] and nonregulated [polyaromatic hydrocarbons (PAHs), carbonyls, and other volatile organic chemicals] emissions, except for nitrogen oxides (NO(x)), compared with the base fuel. Although burning a fuel that contains oxygen could conceivably yield more oxygenated compounds in emissions, the oxygenate-blended diesel fuel resulted in reduced emissions of formaldehyde along with hydrocarbons such as benzene, 1,3-butadiene, and PAHs. Reductions in nitro-PAH emissions have been observed in both the cetane-enhanced and oxygenated fuels. This further demonstrates the benefits of using a cetane enhancer and the oxygenated fuel component.  相似文献   

18.
The concentrations of trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed to total suspended particulate (TSP) and finer fractions of airborne particulate matter (PM) were determined from a site in the centre of Athens (Greece), which is characterized by heavy local traffic and is densely populated, during the winter and summer periods in 2003-2004. Also, we collected and analyzed samples of diesel and gasoline exhaust particles from local vehicles (buses, taxis and private cars) and from chimney exhaust of residential central heating appliances. A seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. The most commonly detected trace metals in the TSP and PM fractions were Fe, Pb, Zn, Cu, Cr, V, Ni and Cd and their concentrations were similar to levels observed in heavily polluted urban areas from local traffic and other anthropogenic emissions. Analysis of 16 PAHs bound to PM showed that they are mostly traffic related. In general, the fine particulate PAHs concentrations were higher than coarse particles. The most common PAHs in PM(10.2) and PM(2.1) were pyrene, phenanthrene, acenapthylene and fluoranthene, which are associated with diesel and gasoline exhaust particles. The results of this study underlined the importance of local emission sources, especially vehicular traffic, central heating and other local anthropogenic emissions. Compared with other big cities, Athens has much higher levels of airborne particles, especially of the finer fractions PM(10) and PM(2.5), correlated with traffic-related air pollution.  相似文献   

19.
Yang HH  Chen CM 《Chemosphere》2004,56(10):879-887
The application of a chemical mass balance air pollution model to ambient measurements of polycyclic aromatic hydrocarbons (PAHs) is presented. Sixteen air samples were collected at seven sites in a suburban area in Taiwan and analyzed for the concentration of 21 compounds between July 2001 and September 2001. Each ambient sample was evaluated for the PAH contribution from six sources (heavy oil combustion, natural gas combustion, coal combustion, diesel combustion, vehicles and municipal solid waste incinerator). Average predictions agree well with the emission inventory. By this method, the average contributions are 49%, 14%, 22%, 12%, and 2% from vehicles, heavy oil combustion, natural gas combustion, coal combustion and diesel combustion at these seven receptors. By far, vehicles are the major PAH emission sources and municipal solid waste incinerator is a minor contributor. The calculated result of particulate PAHs is compared with that of total (gaseous and particulate) PAHs. The estimate based on total PAHs is better than the estimate based on particulate PAHs only. Contributions of eight low reactive PAHs for the same emission sources and receptors were calculated. Atmospheric reactivity seems not a problem for source apportionment in this study.  相似文献   

20.
An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibility of this vehicle as a source of diesel emissions. Exhaust was supplied to a specially constructed exposure chamber at a target concentration of 100 microg x m(-3) diesel particulate matter (DPM). Spatial variability within the chamber was negligible, whereas emission concentrations were stable, reproducible, and similar to concentrations observed on the dynamometer. Measurements of nitric oxide, nitrogen dioxide, carbon monoxide, particulate matter (PM), elemental and organic carbon, carbonyls, trace elements, and polycyclic aromatic hydrocarbons were made during exposures of both healthy and asthmatic volunteers to DPM and control conditions. The effect of the so-called "personal cloud" on total PM mass concentrations was also observed and accounted for. Conventional lung function tests in 11 volunteer subjects (7 stable asthmatic) did not demonstrate a significant change after 2-hr exposures to diesel exhaust. In summary, we demonstrated that this facility can be effectively and safely used to evaluate acute responses to diesel exhaust exposure in human volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号