首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A central question in the study of predator–prey relationships is to what extent prey behaviour is determined by avoidance of predators. Here, we test whether the long-term risk of encountering lions and the presence of lions in the vicinity influence the behaviour of large African herbivores at waterholes through avoidance of high-risk areas, increases in group size, changes in temporal niche or changes in the time spent in waterhole areas. In Hwange National Park, Zimbabwe, we monitored waterholes to study the behaviour of nine herbivore species under different risks of encountering lions. We radio-collared 26 lions in the study area which provided the opportunity to monitor whether lions were present during observation sessions and to map longer-term seasonal landscapes of risk of encountering lions. Our results show that the preferred prey species for lions (buffalo, kudu and giraffe) avoided risky waterholes. Group size increased as encounter risk increased for only two species (wildebeest and zebra), but this effect was not strong. Interestingly, buffalo avoided the hours of the day which are dangerous when the long-term and short-term risks of encountering lions were high, and all species showed avoidance of waterhole use at night times when lions were in the vicinity. This illustrates well how prey can make temporal adjustments to avoid dangerous periods coinciding with predator hunting. Additionally, many herbivores spent more time accessing water to drink when the long- and short-term risks of encountering lions were high, and they showed longer potential drinking time when the long-term risk of encountering lions was high, suggesting higher levels of vigilance. This study illustrates the diversity of behavioural adjustments to the risk of encountering a predator and how prey respond differently to temporal variations in this risk.  相似文献   

2.
Within predator-prey systems behavior can heavily influence spatial dynamics, and accordingly, the theoretical study of how spatial dynamics relate to stability within these systems has a rich history. However, our understanding of these behaviors in large mammalian systems is poorly developed. To address the relationship between predator selection patterns, prey density, and prey vulnerability, we quantified selection patterns for two fine-scale behaviors of a recovering wolf (Canis lupus) population in Yellowstone National Park, Wyoming, USA. Wolf spatial data were collected between November and May from 1998-1999 until 2001-2002. Over four winters, 244 aerial locations, 522 ground-based telemetry locations, 1287 km of movement data from snow tracking, and the locations of 279 wolf kill sites were recorded. There was evidence that elk (Cervus elaphus) and bison (Bison bison) densities had a weak effect on the sites where wolves traveled and made kills. Wolf movements showed a strong selection for geothermal areas, meadows, and areas near various types of habitat edges. Proximity to edge and habitat class also had a strong influence on the locations where elk were most vulnerable to predation. There was little evidence that wolf kill sites differed from the places where wolves traveled, indicating that elk vulnerability influenced where wolves selected to travel. Our results indicate that elk are more vulnerable to wolves under certain conditions and that wolves are capable of selecting for these conditions. As such, vulnerability plays a central role in predator-prey behavioral games and can potentially impact the systems to which they relate.  相似文献   

3.
Sexual selection that results in the evolution of exaggerated secondary sexual characters has been hypothesized to impose production and maintenance costs of such traits on their bearers. Costs arising from sexual selection could increase the intensity of predator-mediated natural selection, leading to the prediction that species with exaggerated secondary sexual characters should be particularly susceptible to predation. We tested this prediction in a comparative analysis based on 31,745 prey individuals belonging to 66 species of birds collected from a total of 937 breeding events by 33 to 66 different pairs of European sparrowhawks Accipiter nisus annually during a period of 21 years. To assess vulnerability of different species we estimated a prey vulnerability index based on the difference in the logarithmically transformed absolute abundance of prey minus the logarithmically transformed expected abundance as determined by population density of breeding birds. The prey vulnerability index was predicted by sexual dichromatism, accounting for 23% of the variance in risk of predation among species, even when considering similarity in phenotype among species due to common descent (in the latter case explaining 12% of the variance). This finding suggests that sexual selection is an important evolutionary force-affecting predator–prey interactions.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
The presence of prey heterogeneity and weakly interacting prey species is frequently viewed as a stabilizer of predator-prey dynamics, countering the destabilizing effects of enrichment and reducing the amplitude of population cycles. However, prior model explorations have largely focused on long-term, dynamic attractors rather than transient dynamics. Recent theoretical work shows that the presence of prey that are defended from predation can have strongly divergent effects on dynamics depending on time scale: prey heterogeneity can counteract the destabilizing effects of enrichment on predator-prey dynamics at long time scales but strongly destabilize systems during transient phases by creating long periods of low predator/prey abundance and increasing extinction probability (an effect that is amplified with increasing enrichment). We tested these general predictions using a planktonic system composed of a zooplankton predator and multiple algal prey. We first parameterized a model of our system to generate predictions and tested these experimentally. Our results qualitatively supported several model predictions. During transient phases, presence of defended algal prey increased predator extinctions at low and high enrichment levels compared to systems with only a single edible prey. This destabilizing effect was moderated at higher dilution rates, as predicted by our model. When examining dynamics beyond initial oscillations, presence of the defended prey increased predator-prey temporal variability at high nutrient enrichment but had no effect at low nutrient levels. Our results highlight the importance of considering transient dynamics when assessing the role of stabilizing factors on the dynamics of food webs.  相似文献   

5.
Few studies have examined predator-prey relationships in diverse communities such as those found on coral reefs. Here we examined patterns of spatial and temporal association between the local abundance of predator and prey fishes at Lizard Island on the Great Barrier Reef, Australia. We predicted that the nature of this association would have implications for patterns of prey-fish mortality. Strong positive relationships between prey and piscivore abundance were found throughout the study. Greater densities of predators and of prey were found on patch-reef habitats, compared with contiguous reef-slope habitats. Declines in prey-fish abundance on patch reefs were density-dependent and correlated with the densities of predators. The relative roles of recruitment and piscivore movement in determining patterns of predator and prey abundance were assessed from surveys of recruit densities and an intensive programme of tagging two species of rock-cod, Cephalopholis cyanostigma and C. boenak (Serranidae), over 2 years. Patterns of recruitment explained little of the variation in the abundance and distribution of piscivorous fish. If movement explains large-scale patterns of distribution, this was not evident from the tagging study. The two rock-cod species were highly sedentary, with individuals on patch reefs seldom moving among reefs. Individuals on reef slopes were also highly site-attached, although they moved greater distances than those on patch reefs. Although the mechanisms responsible remain to be determined, this study demonstrated strong associations between the abundance of piscivorous fish and their prey on coral reefs. This relationship appeared to be an important factor in producing density-dependent declines in the abundance of prey. Received: 30 April 2000 / Accepted: 22 September 2000  相似文献   

6.
Fenton A  Rands SA 《Ecology》2006,87(11):2832-2841
Parasites are known to directly affect their hosts at both the individual and population level. However, little is known about their more subtle, indirect effects and how these may affect population and community dynamics. In particular, trophically transmitted parasites may manipulate the behavior of intermediate hosts, fundamentally altering the pattern of contact between these individuals and their predators. Here, we develop a suite of population dynamic models to explore the impact of such behavioral modifications on the dynamics and structure of the predator-prey community. We show that, although such manipulations do not directly affect the persistence of the predator and prey populations, they can greatly alter the quantitative dynamics of the community, potentially resulting in high amplitude oscillations in abundance. We show that the precise impact of host manipulation depends greatly on the predator's functional response, which describes the predator's foraging efficiency under changing prey availabilities. Even if the parasite is rarely observed within the prey population, such manipulations extend beyond the direct impact on the intermediate host to affect the foraging success of the predator, with profound implications for the structure and stability of the predator-prey community.  相似文献   

7.
Mooney KA 《Ecology》2006,87(7):1805-1815
Predators affect herbivores directly and indirectly, by consumptive and nonconsumptive effects, and the combined influence of multiple predators is shaped by interactions among predators. I documented the individual and combined effects of birds (chickadees, nuthatches, warblers) and ants (Formica podzolica) on arthropods residing in pine (Pinus ponderosa) canopies in a factorial field experiment. Birds and ants removed herbivores but simultaneously benefited them by removing predatory arthropods. Birds and ants had net negative and positive effects, respectively, on the abundance of herbivore prey, supporting the notion that vertebrate predators have stronger negative effects on herbivores than do arthropod predators. Aphids (ant-tended and untended species) constituted three-quarters of herbivore biomass. The effect of birds on ant-tended aphids was twice that on untended aphid species or tended aphid species without ants. This was not due to there being more ant-tended aphids for birds to prey on; tended and untended aphid species were in similar abundances in the absence of birds. Instead, the effects of birds were strengthened by attributes of the mutualism that rendered tended aphids susceptible to predation. These dynamics led to nonadditive effects of birds and ants: birds only reduced tended aphid species and total herbivore abundances on trees with ants, while ants only increased tended aphid species and total herbivore abundances in the absence of birds. Consequently, top predators in this system only influenced total herbivore abundance when they disrupted an ant-aphid mutualism.  相似文献   

8.
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.  相似文献   

9.
Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.  相似文献   

10.
Rudolf VH 《Ecology》2008,89(6):1650-1660
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.  相似文献   

11.
To flee or not to flee: predator avoidance by cheetahs at kills   总被引:2,自引:0,他引:2  
Mammalian carnivores are unusual because their primary competitors for food are often their primary predators. This relationship is most evident at persistent kills where dominant competitors are attracted to both the carcass (as a free meal) and to the killers (as potential prey). Cheetahs (Acinonyx jubatus) are frequent victims of kleptoparasitism, and cubs, and sometimes adults, are killed by lions (Panthera leo) or spotted hyenas (Crocuta crocuta). Between 1980 and 2002, we observed 639 kills made by cheetahs in Serengeti National Park, Tanzania. These kills were often visited by scavengers, including relatively innocuous species such as vultures and jackals and potentially dangerous species, like spotted hyenas and lions. We used cheetah behavior at kills to test a number of predictions about how cheetahs should minimize risk at kill sites given they face an increased risk of predation of themselves or their cubs. In particular, we examined the propensity of cheetahs of different age/sex classes to hide carcasses after making a kill, vigilance at kills, and the delay in leaving after finishing feeding with respect to ecological factors and scavenger presence. The behavior of single females at kills did not suggest that they were trying to avoid being killed, but the behavior of males, often found in groups, was in line with this hypothesis. In contrast, the behavior of mother cheetahs at kills appeared to be influenced greatly by the risk of cubs being killed. Our results suggest that cheetahs use several behavioral counterstrategies to avoid interspecific predation of self or cubs.  相似文献   

12.
Livestock populations in protected areas are viewed negatively because of their interaction with native ungulates through direct competition for food resources. However, livestock and native prey can also interact indirectly through their shared predator. Indirect interactions between two prey species occur when one prey modifies either the functional or numerical responses of a shared predator. This interaction is often manifested as negative effects (apparent competition) on one or both prey species through increased predation risk. But indirect interactions can also yield positive effects on a focal prey if the shared predator modifies its functional response toward increased consumption of an abundant and higher-quality alternative prey. Such a phenomenon between two prey species is underappreciated and overlooked in nature. Positive indirect effects can be expected to occur in livestock-dominated wildlife reserves containing large carnivores. We searched for such positive effects in Acacia-Zizhypus forests of India's Gir sanctuary where livestock (Bubalus bubalis and Bos indicus) and a coexisting native prey (chital deer, Axis axis) are consumed by Asiatic lions (Panthera leo persica). Chital vigilance was higher in areas with low livestock density than in areas with high livestock density. This positive indirect effect occurred because lion predation rates on livestock were twice as great where livestock were abundant than where livestock density was low. Positive indirect interactions mediated by shared predators may be more common than generally thought with rather major consequences for ecological understanding and conservation. We encourage further studies to understand outcomes of indirect interactions on long-term predator-prey dynamics in livestock-dominated protected areas.  相似文献   

13.
Food availability does not only refer to the abundance of edible items; accessibility and detectability of food are also essential components of the availability concept. Constraints imposed by a habitat’s physical structure on the accessibility and detectability of food have been seldom treated simultaneously to the abundance of prey at the foraging patch level in observational studies. We designed a research that allowed decoupling the effects of microhabitat structure and prey abundance on foraging patch selection of the trawling insectivorous long-fingered bat (Myotis capaccinii). The use of different patches of river was surveyed by radiotelemetry during three periods of the bat’s annual cycle, and prey abundance was accordingly measured in and out of the hunting grounds of the tracked bats by insect traps emulating the species’ foraging. Bats preferentially used river stretches characterised by an open course and smooth water surfaces, i.e. they used the most suitable patches in terms of prey accessibility and detectability, respectively. In addition, prey abundance in the selected river stretches was higher than in others where bat activity was not recorded, although the latter also offered good access and prey detection possibilities. Bats also shifted foraging stretches seasonally, likely following the spatiotemporal dynamics of prey production over the watershed. We suggest that the decisions of bats during the patch choice process fitted a hierarchical sequence driven first by the species’ morphological specialisations and ability to hunt in unobstructed spaces, then by the detectability of prey on water surfaces and, finally, by the relative abundance of prey.  相似文献   

14.
Borer ET  Briggs CJ  Holt RD 《Ecology》2007,88(11):2681-2688
Although the canonical concept of intraguild predation evokes images of predators and prey, several subdisciplines within ecology have developed theory not specifically framed in terms of predation and competition and often using system-specific terminology, yet functionally quite similar. Here, we formulate models combining exploitation and competition in predator-prey, host-parasitoid, and host-pathogen communities to compare dynamics, food web structure, and coexistence criteria for these disparate communities. Although dynamic stability in the coexistence region varies strongly among systems, in all cases coexistence of two consumers on a single resource occurs only if the intraguild prey species is more efficient than the intraguild predator at suppressing the abundance of the basal resource, and if the intraguild predator accrues a sufficient gain from attacking the intraguild prey. In addition, equilibrial abundances of all species in all three formulations respond similarly to increases in productivity of the basal resource. Our understanding of predator-prey and parasitoid-host communities has benefited from explicit examination of intraguild predation (IGP) theory, and we suggest that future research examining pathogen communities, in particular, will benefit substantially from explicit recognition of predictions from IGP theory.  相似文献   

15.
Although predators affect prey both via consumption and by changing prey migration behavior, the interplay between these two effects is rarely incorporated into spatial models of predator-prey dynamics and competition among prey. We develop a model where generalist predators have consumptive effects (i.e., altering the likelihood of local prey extinction) as well as nonconsumptive effects (altering the likelihood of colonization) on spatially separated prey populations (metapopulations). We then extend this model to explore the effects of predators on competition among prey. We find that generalist predators can promote persistence of prey metapopulations by promoting prey colonization, but predators can also hasten system-wide extinction by either increasing local extinction or reducing prey migration. By altering rates of prey migration, predators in one location can exert remote control over prey dynamics in another location via predator-mediated changes in prey flux. Thus, the effect of predators may extend well beyond the proportion of patches they visit. In the context of prey metacommunities, predator-mediated shifts in prey migration and mortality can shift the competition-colonization trade-off among competing prey, leading to changes in the prey community as well as changes in the susceptibility of prey species to habitat loss. Consequently, native prey communities may be susceptible to invasion not only by exotic prey species that experience reduced amounts of mortality from resident predators, but also by exotic prey species that exhibit strong dispersal in response to generalist native predators. Ultimately, our work suggests that the consumptive and nonconsumptive effects of generalist predators may have strong, yet potentially cryptic, effects on competing prey capable of mediating coexistence, fostering invasion, and interacting with anthropogenic habitat alteration.  相似文献   

16.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

17.
Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.  相似文献   

18.
de Sassi C  Lewis OT  Tylianakis JM 《Ecology》2012,93(8):1892-1901
Warmer temperatures can alter the phenology and distribution of individual species. However, differences across species may blur community-level phenological responses to climate or cause biotic homogenization by consistently favoring certain taxa. Additionally, the response of insect communities to climate will be subject to plant-mediated effects, which may or may not overshadow the direct effect of rising temperatures on insects. Finally, recent evidence for the importance of interaction effects between global change drivers suggests that phenological responses of communities to climate may be altered by other drivers. We used a natural temperature gradient (generated by elevation and topology), combined with experimental nitrogen fertilization, to investigate the effects of elevated temperature and globally increasing anthropogenic nitrogen deposition on the structure and phenology of a seminatural grassland herbivore assemblage (lepidopteran insects). We found that both drivers, alone and in combination, severely altered how the relative abundance and composition of species changed through time. Importantly, warmer temperatures were associated with biotic homogenization, such that herbivore assemblages in the warmest plots had more similar species composition than those in intermediate or cool plots. Changes in herbivore composition and abundance were largely mediated by changes in the plant community, with increased nonnative grass cover under high treatment levels being the strongest determinant of herbivore abundance. In addition to compositional changes, total herbivore biomass more than doubled under elevated nitrogen and increased more than fourfold with temperature, bearing important functional implications for herbivores as consumers and as a prey resource. The crucial role of nonnative plant dominance in mediating responses of herbivores to change, combined with the frequent nonadditive (positive and negative) effects of the two drivers, and the differential responses of species, highlight that understanding complex ecosystem responses will benefit from multifactor, multitrophic experiments at community scales or larger.  相似文献   

19.
Studies have shown that pelagic predators do not overlap with their prey at small scales. However, we hypothesized that spinner dolphin foraging would be affected by the spatio-temporal dynamics of their prey at both small and large scales. A modified echosounder was used to simultaneously measure the abundance of dolphins and their prey as a function of space and time off three Hawaiian islands. Spinner dolphin abundance closely matched the abundance patterns in the boundary community both horizontally and vertically. As hypothesized, spinner dolphins followed the diel horizontal migration of their prey, rather than feeding offshore the entire night. Spinner dolphins also followed the vertical migrations of their prey and exploited the vertical areas within the boundary layer that had the highest prey density. Cooperative foraging by pairs of dolphins within large groups was evident. The geometric and density characteristics of prey patches containing dolphins indicate that dolphins may alter the characteristics of prey patches through this cooperative foraging. The overlap of Hawaiian spinner dolphins and their prey at many temporal and spatial scales, ranging from several minutes to an entire night and 20 m to several kilometers, indicates that the availability of truly synoptic data may fundamentally alter our conclusions about pelagic predator-prey interactions.  相似文献   

20.
Simonis JL 《Ecology》2012,93(7):1517-1524
Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号