首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.  相似文献   

2.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

3.
Soil testing to predict phosphorus leaching   总被引:12,自引:0,他引:12  
Subsurface pathways can play an important role in agricultural phosphorus (P) losses that can decrease surface water quality. This study evaluated agronomic and environmental soil tests for predicting P losses in water leaching from undisturbed soils. Intact soil columns were collected for five soil types that a wide range in soil test P. The columns were leached with deionized water, the leachate analyzed for dissolved reactive phosphorus (DRP), and the soils analyzed for water-soluble phosphorus (WSP), 0.01 M CaCl2 P (CaCl2-P), iron-strip phosphorus (FeO-P), and Mehlich-1 and Mehlich-3 extractable P, Al, and Fe. The Mehlich-3 P saturation ratio (M3-PSR) was calculated as the molar ratio of Mehlich-3 extractable P/[Al + Fe]. Leachate DRP was frequently above concentrations associated with eutrophication. For the relationship between DRP in leachate and all of the soil tests used, a change point was determined, below which leachate DRP increased slowly per unit increase in soil test P, and above which leachate DRP increased rapidly. Environmental soil tests (WSP, CaCl2-P, and FeO-P) were slightly better at predicting leachate DRP than agronomic soil tests (Mehlich-1 P, Mehlich-3 P, and the M3-PSR), although the M3-PSR was as good as the environmental soil tests if two outliers were omitted. Our results support the development of Mehlich-3 P and M3-PSR categories for profitable agriculture and environmental protection; however, to most accurately characterize the risk of P loss from soil to water by leaching, soil P testing must be fully integrated with other site properties and P management practices.  相似文献   

4.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

5.
Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones.  相似文献   

6.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   

7.
Phosphorus (P) is a limiting nutrient in freshwater systems and when present in runoff from agricultural lands or urban centers may contribute to excessive periphyton growth. In this study, we examined the link between soil erosion and delivery of eroded soil to streams during flow events, and the impact of that freshly deposited soil on dissolved reactive P (DRP) concentrations and periphyton growth under baseflow conditions when the risk of stream eutrophication is greatest. A microcosm experiment was designed to simulate the release of P from soil which had been amended with different amounts of P fertilizer to overlying water during baseflow conditions. Unglazed tiles, inoculated for five days in a second order stream, were incubated for seven days in microcosms containing soil with eight levels of soil Mehlich‐3 plant available phosphorus (M3P) ranging from 20 to 679 mg/kg M3P. Microcosm DRP was monitored. Following incubation tiles were scraped and the periphyton analyzed for chlorophyll a. Microcosm DRP concentrations increased with increasing soil M3P and equilibrium phosphorus concentration (EPC0). Relationships between M3P, EPC0, and DRP were nonlinear and increases in soil M3P and/or DRP had a greater impact on biomass accumulation when these parameters were above threshold values of 30 mg/kg M3P and 0.125 mg/L DRP. Significantly, this ecological threshold corresponds to the agronomic thresholds above which increased soil M3P does not increase plant response.  相似文献   

8.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

9.
Contribution of particulate phosphorus to runoff phosphorus bioavailability   总被引:1,自引:0,他引:1  
Runoff P associated with eroded soil is partly solubilized in receiving waters and contributes to eutrophication, but the significance of particulate phosphorus (PP) in the eutrophying P load is debatable. We assessed losses of bioavailable P fractions in field runoff from fine-textured soils (Cryaquepts). Surface runoff at four sites and drain-flow at two of them was sampled. In addition to dissolved molybdate-reactive phosphorus (DRP) losses, two estimates of bioavailable PP losses were made: (i) desorbable PP, assessed by anion exchange resin-extraction (AER-PP) and (ii) redox-sensitive PP, assessed by extraction with bicarbonate and dithionite (BD-PP). Annual losses of BD-PP and AER-PP were derived from the relationships (R2 = 0.77-0.96) between PP and these P forms. Losses of BD-PP in surface runoff (94-1340 g ha(-1)) were typically threefold to fivefold those of DRP (29-510 kg ha(-1)) or AER-PP (13-270 g ha(-1)). Where monitored, drainflow P losses were substantial, at one of the sites even far greater than those via the surface pathway. Typical runoff DRP concentration at the site with the highest Olsen-P status (69-82 mg kg(-1)) was about 10-fold that at the site with the lowest Olsen P (31-45 mg kg(-1)), whereas the difference in AER-PP per mass unit of sediment was only threefold, and that of BD-PP 2.5-fold. Bioavailable P losses were greatly influenced by PP runoff, especially so on soils with a moderate P status that produced runoff with a relatively low DRP concentration.  相似文献   

10.
Applications of manures to agricultural fields have increased soil test values for P to high levels in parts of the USA and thus increased the likelihood that P will be transported to surface water and degrade its quality. Waste paper applications to soils with high STP (soil test P) may decrease the risk of P transport to surface water by decreasing DRP (dissolved reactive P) by the formation of insoluble Al-P complexes and providing organic matter to improve infiltration. A field experiment was conducted near Booneville, AR (USA) to assess the effects of different rates of a waste paper product addition on STP, soil bulk density, and total soil C with a soil with approximately 45 mg Bray1-P kg-1 soil (dry weight). A Leadvale silt loam soil (fine-silty, siliceous, thermic Typic Fragiudult) was amended with 0, 22, 44, or 88 Mg waste paper product ha-1 to supply approximately 90, 170, or 350 kg Al ha-1, respectively. One year after additions, there was a strong negative correlation between waste paper product application rates and soil bulk density, and a strong positive correlation between rates and total soil C content. Soil bulk density and total C 2 yr after additions, and soil DRP and Bray1-P were not affected by waste paper additions. These results support the hypothesis that decreases in DRP in runoff from soils receiving waste paper additions were probably due to changes in soil organic matter and bulk density, rather than changes in the chemical forms of soil P.  相似文献   

11.
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.  相似文献   

12.
Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241-289 g clay kg(-1) and pH 6.0-8.0) was incubated with five NH4H2PO4 rates (0-600 mg P kg(-1)) for 30 d. Total soil P (TPS) and soil-test P (STP) measured with Bray-P1 (BP), Mehlich-3 (M3P), Olsen (OP), Fe-oxide-impregnated paper (FeP), and water (WP) tests were 370 to 1360, 3 to 530, 10 to 675, 4 to 640, 7 to 507, and 2 to 568 mg P kg(-1), respectively. Degree of soil P saturation (DPS) was estimated by indices based on P sorption index (PSI) and STP (DPSSTP) and P, Fe, and Al extracted by ammonium oxalate (DPSox) or Mehlich-3 (DPSM3). Soil was packed to 1.1 g cm(-3) bulk density in triplicate boxes set at 4% slope. Surface runoff was collected during 75 min of 6.5 cm h(-1) rain. Runoff bioavailable P (BAP) and dissolved reactive P (DRP) increased linearly with increased P rate, STP, DPSox, and DPSM3 but curvilinearly with DPSSTP. Correlations between DRP or BAP and soil tests or saturation indices across soils were greatest (r > or = 0.95) for FeP, OP, and WP and poorest for BP and TPS (r = 0.83-0.88). Excluding the calcareous soil (Calciaquoll) significantly improved correlations only for BP. Differences in relationships between runoff P and the soil tests were small or nonexistent among the noncalcareous soils. Routine soil P tests can estimate relationships between runoff P concentration and P application or soil P, although estimates would be improved by separate calibrations for calcareous and noncalcareous soils.  相似文献   

13.
Phosphorus application in excess of crop needs has increased the concentration of P in surface soil and runoff and led many states to develop P-based nutrient management strategies. However, insufficient data are available relating P in surface soil, surface runoff, and subsurface drainage to develop sound guidelines. Thus, we investigated P release from the surface (0-5 cm depth) of a Denbigh silt loam from Devon, U.K. (30-160 mg kg-1 Olsen P) and Alvin, Berks, Calvin, and Watson soils from Pennsylvania (10-763 mg kg-1 Mehlich-3 P) in relation to the concentration of P in surface runoff and subsurface drainage. A change point, where the slopes of two linear relationships between water- or CaCl2-extractable soil P and soil test phosphorus (STP) (Olsen or Mehlich-3) meet, was evident for the Denbigh at 33 to 36 mg kg-1 Olsen P, and the Alvin and Berks soils at 185 to 190 mg Mehlich-3 P kg-1. Similar change points were also observed when STP was related to the P concentration of surface runoff (185 mg kg-1) and subsurface drainage (193 mg kg-1). The use of water and CaCl2 extraction of surface soil is suggested to estimate surface runoff P (r2 of 0.92 for UK and 0.86 for PA soils) and subsurface drainage P (r2 of 0.82 for UK and 0.88 for PA soils), and to determine a change point in STP, which may be used in support of agricultural and environmental P management.  相似文献   

14.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

15.
Continual application of mineral fertilizer and manures to meet crop production goals has resulted in the buildup of soil P concentrations in many areas. A rainfall simulation study was conducted to evaluate the effect of the application of P sources differing in water-soluble P (WSP) concentration on P transport in runoff from two grassed and one no-till soil (2 m(2) plots). Triple superphosphate (TSP)-79% WSP, low-grade single superphosphate (LGSSP)-50% WSP, North Carolina rock phosphate (NCRP)-0.5% WSP, and swine manure (SM)-30% WSP, were broadcast (100 kg total P ha(-1)) and simulated rainfall (50 mm h(-1) for 30 min of runoff) applied 1, 7, 21, and 42 d after P source application. In the first rainfall event one d after fertilizer application, dissolved reactive P (DRP) and total P (TP) concentrations of runoff increased (P < 0.05) for all soils with an increase of source WSP; with DRP averaging 0.27, 0.50, 14.66, 41.69, and 90.47 mg L(-1); and total P averaging 0.34, 0.61, 19.05, 43.10, and 98.06 mg L(-1) for the control, NCRP, SM, LGSSP, and TSP, respectively. The loss of P in runoff decreased with time for TSP and SM, such that after 42 d, losses from TSP, SM, and LGSSP did not differ. These results support that P water solubility in P sources may be considered as an indicator of P loss potential.  相似文献   

16.
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.  相似文献   

17.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

18.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

19.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

20.
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号