首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: We tested the common assumption, made when expressing phosphorus export on an areal basis, that this export is a linear function of catchment area and found it wanting. The data show that in agricultural catchments, TP (total phosphorus) export varies as the 0.77 power of drainage basin area, resulting in a reduction in phosphorus delivery per unit area with increasing catchment size. Following further division of catchments according to agricultural practice, we found that this spatial scale effect is restricted to row crops and pastures. We present simple statistical models to allow a comparison of TP export from catchments of different size. Such models are not needed for nonrow crops, mixed agricultural and forested catchments, where TP export is a linear function of catchment size.  相似文献   

2.
Pollution of water resources by phosphorus (P) is a critical issue in regions with agricultural and urban development. In this study, we estimated P inputs from agricultural and urban sources in 24 catchments draining to the Central Valley in California and compared them with measured river P export to investigate hydrologic and anthropogenic factors affecting regional P retention and export. Using spatially explicit information on fertilizer use, livestock population, agricultural production, and human population, we calculated that net surface balances for anthropogenic P ranged from -12 to 648 kg P km yr in the early 2000s. Inorganic P fertilizer and manure P comprised the largest fraction of total input for all but two catchments. From 2000 to 2003, a median of 7% (range, -287 to 88%) of net annual anthropogenic P input was exported as total P (TP). Yields (kg P km yr) of dissolved inorganic P (DIP), dissolved organic P, particulate P, and TP were not significantly related to catchment-level, per area anthropogenic P input. However, there were significant relationships between mean annual P concentrations and P input from inorganic fertilizers and manure due to the concentration of agricultural land near catchment mouths and regional variation in runoff. Catchment-level P fertilizer and manure inputs explained 4 to 23% more variance in mean annual DIP and TP concentrations than percent of catchment area in agriculture. This study suggests that spatially explicit estimates of anthropogenic P input can help identify sources of multiple forms of P exported in rivers at management-relevant spatial scales.  相似文献   

3.
: Estimates of specific annual suspended sediment yields, some of which rank among the highest reported in the world, are presented for 33 basins of South Island, New Zealand. Yield from each basin was determined by combining a suspended sediment concentration rating with the complete flow record of each catchment stream gaging station. A multiple regression analysis between sediment yields and climatic, hydrologic and physiographic parameters of each basin demonstrates that most of the variance in yields is explained by catchment mean rainfall. Geology apparently has little influence on sediment yield as suspended sediment concentration ratings, from rivers draining catchments of differing lithology, and regolith, are indistinguishable. Specific suspended sediment yield prediction equations are given for four defined regions covering in area almost all South Island; and except for one area, feature rainfall as the principle independent variable. Differences between regions may be due to variations in intensity, frequency, and duration patterns of storms. It is proposed that a simple power law relationship between yield and rainfall provides useful suspended sediment yield estimates in mountainous regions of temperate maritime climate, provided catchments have not been modified extensively by man.  相似文献   

4.
We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organic matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.  相似文献   

5.
ABSTRACT: Five types of land use/land covers in the West Tiaoxi watershed of China were studied for nutrient losses in artificial rainstorm runoff. A self‐designed rainfall simulator was used. In situ rainfall simulations were used to: (1) compare the concentrations of nitrogen and phosphorous in different land use/land covers and (2) evaluate the flux of nitrogen and phosphorous export from runoff and sediment in various types of land use/land covers. Three duplicated experiments were carried out under rain intensity of 2 mm/min, each lasting 32 minutes on a 3 m2 plot. Characteristics of various species of nitrogen and phosphorous in runoff and sediment were investigated. The results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) were greatest in runoff from mulberry trees and smallest from pine forest. The TN and TP export was mainly from suspended particulate in runoff. TN and TP exports from the top 10 cm layer of five types of land use/land covers were estimated as high as 4.66 to 9.40 g/m2 and 2.57 to 4.89 g/m2, respectively, of which exports through sediment of runoff accounted for more than 90 percent and 97 percent. The rate of TN and TP exports ranged from 2.68 to approximately 14.48 and 0.45 to approximately 4.11 mg/m2/min in runoff; these rates were much lower than those of 100.01 to approximately 172.67 and 72.82 to approximately 135.96 mg/m2/min in the runoff sediment.  相似文献   

6.
Grass vegetation has been recommended for use in the prevention and control of soil erosion because of its dense sward characteristics and stabilizing effect on the soil. A general assumption is that grassland environments suffer from minimal soil erosion and therefore present little threat to the water quality of surface waters in terms of sediment and sorbed contaminant pollution. Our data question this assumption, reporting results from one hydrological year of observations on a field-experiment monitoring overland flow, drain flow, fluxes of suspended solids, total phosphorus (TP), and molybdate-reactive phosphorus (<0.45 mum) in response to natural rainfall events. During individual rainfall events, 1-ha grassland lysimeters yield up to 15 kg of suspended solids, with concentrations in runoff waters of up to 400 mg L(-1). These concentrations exceed the water quality standards recommended by the European Freshwater Fisheries Directive (25 mg L(-1)) and the USEPA (80 mg L(-1)) and are beyond those reported to have caused chronic effects on freshwater aquatic organisms. Furthermore, TP concentrations in runoff waters from these field lysimeters exceeded 800 mug L(-1). These concentrations are in excess of those reported to cause eutrophication problems in rivers and lakes and contravene the ecoregional nutrient criteria in all of the USA ecoregions. This paper also examines how subsurface drainage, a common agricultural practice in intensively managed grasslands, influences the hydrology and export of sediment and nutrients from grasslands. This dataset suggests that we need to rethink the conceptual understanding of grasslands as non-erosive landscapes. Failure to acknowledge this will result in the noncompliance of surface waters to water quality standards.  相似文献   

7.
Two floodplains within the catchment of the River Adour (SW France) have been examined in order to analyse spatio-temporal variations in discharge and suspended matter flux. Both floodplain zones were found to be excellent sites for the interception of suspended sediment. The narrow riparian vegetative strips (RVS) within each zone were found to retain 92-98% of the sediment trapped within the floodplain during each of three separate flood events. The precise level of sediment deposited within the floodplain was found to be dependent on micro-topographical features and the nature of the vegetation: the wooded areas within the RVS being particularly effective at trapping sediment. Mean masses of sediment collected in the flood plains ranged from 75kgm(-2) in the RVS to 0.02kgm(-2) in the areas of the floodplain inundated by back-up flows. Using data on discharge and sediment fluxes within the catchment gathered over a period of 25 years it is possible to discern how hydroclimatic fluctuations have affected the watershed with periods of sediment retention within the floodplain zones alternating with periods of sediment export. Anthropogenic activity, involving river management, including the cutting of meanders, the construction of dykes for flood prevention and the use of water for agricultural purposes, has also had a major impact during this period, particularly in the downstream areas of the catchment.  相似文献   

8.
Seasonal and spatial variations in major ion chemistry and isotope composition in the rural-urban catchment of the Shigenobu River were monitored to determine the influences of agricultural and urban sewage systems on water quality. Temporal patterns of biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) were examined at four sites in the rural-urban catchment. Urban land cover, incorporating the effects of increased population, domestic water use, and industrial wastewater, was positively associated with increases in water pollution and was included as an important explanatory variable for the variations in all water quality parameters. Significant trends were found in each parameter. BOD concentrations ranged widely, and were high in urban regions, due to the presence of a waste water treatment plant. TN and SS showed various trends, but did not vary widely, unlike TP. TP concentrations varied greatly, with high concentrations in cultivated areas, due to fertilizer use. Local water quality management or geology could further explain some of the variations in water quality. Non-point-source pollution exhibited strong positive spatial autocorrelation, indicating that incorporating spatial dimensions into water quality assessment enhances our understanding of spatial patterns of water quality. Data from the Ministry of Land Infrastructure and Transport (MLIT) and Environment Ministry (EM) were used to investigate trends in land management. Stepwise regression analysis was used to test the correlation between specific management practises and substance concentrations in surface water and sediment. MLIT and EM data for 1981-2003 showed an increase in TN, TP, and SS concentrations in surface water. High levels of fertilizer in dormant sprays and domestic water use were associated with high pesticide concentrations in water and sediment. This paper presents a novel method of studying the environmental impact of various agricultural management practises and recommends a management strategy that combines the use of reduced-risk pesticides with irrigation and non-irrigation periods in paddy fields.  相似文献   

9.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   

10.
Dissolved organic nitrogen (DON) has been hypothesized to play a major role in N cycling in a variety of ecosystems. Our aim was to assess the seasonal and concentration relationships between dissolved organic carbon (DOC), DON, and NO3- within 102 streams and 16 lakes within catchments of differing complexity situated in Wales. Further, we aimed to assess whether patterns of land use, soil type, and vegetation gave consistent trends in DON and dissolved inorganic nitrogen (DIN) relationships over a diverse range of catchments. Our results reinforce that DON constitutes a significant component of the total dissolved N pool typically representing 40 to 50% of the total N in streams and lakes but sometimes representing greater than 85% of the total dissolved N. Generally, the levels of DON were inversely correlated with the concentration of DIN. In contrast to DIN concentrations, which showed distinct seasonality, DON showed no consistent seasonal trend. We hypothesize that this reflects differences in the bioavailability of these two N types. The amount of DON, DOC, and DIN was significantly related to soil type with higher DON export from Histosol-dominated catchments in comparison with Spodosol-dominated watersheds. Vegetation cover also had a significant effect on DON concentrations independent of soil type with a nearly twofold decrease in DON export from forested catchments in comparison with nonforested watersheds. Due to the diversity in catchment DON behavior, we speculate that this will limit the adoption of DON as a broad-scale indicator of catchment condition for use in monitoring and assessment programs.  相似文献   

11.
Riparian buffer zones can improve water quality and enhance habitat, but a comprehensive yet rapid method that can assist the resource manager in assessing the effectiveness of buffers is not available. The aim of this paper is to describe and illustrate the use of a newly developed field-based evaluation tool for riparian buffer zones in agricultural catchments. The Buffer Zone Inventory and Evaluation Form (BZIEF) incorporates criteria-based scoring systems developed from literature review, subsequent peer-review, and then a pilot field study. Use of the BZIEF is demonstrated by comparing buffer zones in three catchments established for water quality and habitat improvement under the Water Fringe Option agrienvironment scheme in England in order to assess whether the buffers were likely to provide environmental enhancement. Results among the three catchments were generally similar; buffer zones scored highly for their abundant vegetation cover, lack of erosion, stream habitat quality, and sufficient width. Furthermore, previous grassland or arable land use did not substantially affect buffer zone ratings. However, the BZIEF indicated that inappropriate soil characteristics in one catchment were likely to constrain buffer zone effectiveness for improving water quality. In another catchment, poor riparian vegetation diversity and structure may yield ineffective habitat enhancement, according to the BZIEF. It was concluded that the BZIEF might be a useful tool for buffer zone comparison and monitoring, even though more work is needed to test and validate the method. For example, the BZIEF could be used to target appropriate locations for buffer zones and is flexible, so could be adapted for different policies, objectives and regions.  相似文献   

12.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

13.
Both sediment and phosphorus (P) are important contaminants for surface water quality. Knowing the main sources of sediment and P loss within agricultural catchments enables mitigation practices to be better targeted. With this in mind seasonal loads of suspended sediment (SS), dissolved reactive P (DRP), total P (TP), and bioavailable P (BAP) were measured in a low gradient stream draining an intensively farmed New Zealand dairying catchment. Integrating in situ samplers were deployed to collect samples and the results merged with continuous flow data to calculate seasonal loads during 2005 through 2006. Flow rate, SS, and TP concentrations peaked in winter-spring and were lowest in summer-autumn. Concentrations of BAP in trapped sediment were greatest in autumn, contrasting with winter and spring when greater amounts of sediment were trapped, but with lower P enrichment. Analysis of (137)Cs and mixing model output showed that a major source of sediment and associated P in winter and spring was stream banks. Possible causes for this include trampling and destabilization by stock, channel straightening and sediment removal, and removal of riparian trees that stabilize banks. Modelling indicated that overland flow probably from topsoil (but could include sediment from lanes) contributed most sediment during summer and autumn. Remediation aimed at decreasing particulate P inputs to streams should focus on riparian protection measures, such as permanent stock exclusion and planting with shrubs and trees, ensuring runoff from lanes is minimized, and decreasing Olsen P to nearer optimum agronomic levels.  相似文献   

14.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   

15.
Historical and recent remote sensing data can be used to address temporal and spatial relationships between upland land cover and downstream vegetation response at the watershed scale. This is demonstrated for sub-watersheds draining into Elkhorn Slough, California, where salt marsh habitat has diminished because of the formation of sediment fans that support woody riparian vegetation. Multiple regression models were used to examine which land cover variables and physical properties of the watershed most influenced sediment fan size within 23 sub-watersheds (1.4 ha to 200 ha). Model explanatory power increased (adjusted R(2) = 0.94 vs. 0.75) among large sub-watersheds (>10 ha) and historical watershed variables, such as average farmland slope, flowpath slope, and flowpath distance between farmland and marsh, were significant. It was also possible to explain the increase in riparian vegetation by historical watershed variables for the larger sub-watersheds. Sub-watershed area is the overriding physical characteristic influencing the extent of sedimentation in a salt marsh, while percent cover of agricultural land use is the most influential land cover variable. The results also reveal that salt marsh recovery depends on relative cover of different land use classes in the watershed, with greater chances of recovery associated with less intensive agriculture. This research reveals a potential delay between watershed impacts and wetland response that can be best revealed when conducting multi-temporal analyses on larger watersheds.  相似文献   

16.
Recognition of the threat to the sustainable use of the earth's resources posed by soil erosion and associated off-site sedimentation has generated an increasing need for reliable information on global rates of soil loss. Existing methods of assessing rates of soil loss across large areas possess many limitations and there is a need to explore alternative approaches to characterizing land surface erosion at the regional and global scale. The downcore profiles of 137Cs activity available for numerous lakes and reservoirs located in different areas of the world can be used to provide information on land surface erosion within the upstream catchments. The rate of decline of 137Cs activity toward the surface of the sediment deposited in a lake or reservoir can be used to estimate the rate of surface lowering associated with eroding areas within the upstream catchment, and the concentration of 137Cs in recently deposited sediment provides a basis for estimating the relative importance of surface and channel, gully, and/or subsurface erosion as a source of the deposited sediment. The approach has been tested using 137Cs data from several lakes and reservoirs in southern England and China, spanning a wide range of specific suspended sediment yield. The results obtained are consistent with other independent evidence of erosion rates and sediment sources within the lake and reservoir catchments and confirm the validity of the overall approach. The approach appears to offer valuable potential for characterizing land surface erosion, particularly in terms of its ability to provide information on the rate of surface lowering associated with the eroding areas, rather than an average rate of lowering for the entire catchment surface.  相似文献   

17.
Buffer strips alongside watercourses are a widely accepted method of reducing nutrient and sediment run-off from agricultural land thereby improving water quality. Little attention, however, has been paid to the ecological status of these areas despite the fact that riparian habitats in good condition can provide multiple benefits. We investigated vegetation patterns and plant-environment relationships within three categories of riparian margins in northeast Scotland. The margins were categorized as unbuffered, buffered, or reference (target), the latter representing the best sites available within the catchments. Vascular plant and soil data were collected from 41 sites along the tributaries of two rivers during 2008 and 2009. Ellenberg indicator values revealed trends of decreasing light availability ( < 0.05) and decreasing pH ( < 0.01) from unbuffered sites to buffered sites to reference sites. Multivariate analysis showed that soil parameters and channel morphology, together with canopy cover and bryophyte abundance, were discriminatory in separating species assemblages. The presence of a tree canopy layer appears to be the key instigator of change in soil conditions and corresponding plant species assemblages. An understanding of the underlying processes is important if vegetation characteristics are to be used effectively as indicators of riparian and water quality and to aid the restoration of riparian habitats.  相似文献   

18.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

19.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

20.
The results of an investigation characterizing the nutrients and suspended solids contained in stormwater from Kranji Catchment in Singapore are reported in this paper. Stormwater samples were collected from 4 locations and analyzed for the following eleven analytes: TOC, DOC, TN, TDN, NH4+, NO2 + NO3 (NOx), TP, TDP, OP, SiO2 and TSS. Stormwater was sampled from catchments with various proportions of rural and urban land use, including forested areas, grassed areas, agricultural and residential and commercial areas. The event mean concentrations (EMCs) of nutrients and TSS from sampling stations which have agricultural land use activities upstream were found to be higher. Comparison of site EMCs (SMCs) with published data showed that the SMCs of the nutrients and TSS are generally higher than SMCs reported for forested areas but lower than published SMCs for urban areas. Positive correlations (p < 5%) were found between loading and peak flow at locations most impacted by ubanisation or agricultural activities. Correlation between loading and rainfall variables was less distinct. EMC was found to correlate less with rainfall and flow variables compared to pollutant loading. Unlike loading, no consistent pattern exists linking EMC to any particular storm or flow variable in any of the catchments. Lastly, positive correlations were obtained between the particulate forms of nitrogen and phosphorus and TSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号