首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sustained decline in marine fisheries worldwide underscores the need to understand and monitor fisheries trends and fisher behavior. Recreational fisheries are unique in that they are not subject to the typical drivers that influence commercial and artisanal fisheries (e.g., markets or food security). Nevertheless, although exposed to a different set of drivers (i.e., interest or relaxation), recreational fisheries can contribute to fishery declines. Recreational fisheries are also difficult to assess due to an absence of past monitoring and traditional fisheries data. Therefore, we utilized a nontraditional data source (a chronology of spearfishing publications) to document historical trends in recreational spearfishing in Australia between 1952 and 2009. We extracted data on reported fish captures, advertising, and spearfisher commentary and used regression models and ordination analyses to assess historical change. The proportion of coastal fish captures reported declined approximately 80%, whereas the proportion of coral reef and pelagic fish reports increased 1750% and 560%, respectively. Catch composition shifted markedly from coastal temperate or subtropical fishes during the 1950s to 1970s to coral reef and pelagic species in the 1990s to 2000s. Advertising data and commentary by spearfishers indicated that pelagic fish species became desired targets. The mean weight of trophy coral reef fishes also declined significantly over the study period (from approximately 30–8 kg). Recreational fishing presents a highly dynamic social–ecological interface and a challenge for management. Our results emphasize the need for regulatory agencies to work closely with recreational fishing bodies to observe fisher behavior, detect shifts in target species or fishing intensity, and adapt regulatory measures. Tendencias Dinámicas de Captura en la Historia de la Pesca Recreativa con Arpón en Australia  相似文献   

2.
The search for novel approaches to establishing ecological baselines (reference conditions) is constrained by the fact that most ecological studies span the past few decades, at most, and investigate ecosystems that have been substantially altered by human activities for decades, centuries, or more. Paleobiology, archeology, and history provide historical ecological context for biological conservation, remediation, and restoration. We argue that linking historical ecology explicitly with conservation can help unify related disciplines of conservation paleobiology, conservation archeobiology, and environmental history. Differences in the spatial and temporal resolution and extent (scale) of prehistoric, historic, and modern ecological data remain obstacles to integrating historical ecology and conservation biology, but the prolonged temporal extents of historical ecological data can help establish more complete baselines for restoration, document a historical range of ecological variability, and assist in determining desired future conditions. We used the eastern oyster (Crassostrea virginica) fishery of the Chesapeake Bay (U.S.A.) to demonstrate the utility of historical ecological data for elucidating oyster conservation and the need for an approach to conservation that transcends disciplinary boundaries. Historical ecological studies from the Chesapeake have documented dramatic declines (as much as 99%) in oyster abundance since the early to mid‐1800s, changes in oyster size in response to different nutrient levels from the sixteenth to nineteenth centuries, and substantial reductions in oyster accretion rates (from 10 mm/year to effectively 0 mm/year) from the Late Holocene to modern times. Better integration of different historical ecological data sets and increased collaboration between paleobiologists, geologists, archeologists, environmental historians, and ecologists to create standardized research designs and methodologies will help unify prehistoric, historic, and modern time perspectives on biological conservation. Integración de Paleobiología, Arqueología e Historia para Informar a la Biología de la Conservación  相似文献   

3.
Aggregations of individual animals that form for breeding purposes are a critical ecological process for many species, yet these aggregations are inherently vulnerable to exploitation. Studies of the decline of exploited populations that form breeding aggregations tend to focus on catch rate and thus often overlook reductions in geographic range. We tested the hypothesis that catch rate and site occupancy of exploited fish‐spawning aggregations (FSAs) decline in synchrony over time. We used the Spanish mackerel (Scomberomorus commerson) spawning‐aggregation fishery in the Great Barrier Reef as a case study. Data were compiled from historical newspaper archives, fisher knowledge, and contemporary fishery logbooks to reconstruct catch rates and exploitation trends from the inception of the fishery. Our fine‐scale analysis of catch and effort data spanned 103 years (1911–2013) and revealed a spatial expansion of fishing effort. Effort shifted offshore at a rate of 9.4 nm/decade, and 2.9 newly targeted FSAs were reported/decade. Spatial expansion of effort masked the sequential exploitation, commercial extinction, and loss of 70% of exploited FSAs. After standardizing for improvements in technological innovations, average catch rates declined by 90.5% from 1934 to 2011 (from 119.4 to 11.41 fish/vessel/trip). Mean catch rate of Spanish mackerel and occupancy of exploited mackerel FSAs were not significantly related. Our study revealed a special kind of shifting spatial baseline in which a contraction in exploited FSAs occurred undetected. Knowledge of temporally and spatially explicit information on FSAs can be relevant for the conservation and management of FSA species.  相似文献   

4.
The Wicked Problem of China's Disappearing Coral Reefs   总被引:1,自引:0,他引:1  
We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10–15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef‐management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. El Problema Malvado de la Desaparición de los Arrecifes de Coral en China  相似文献   

5.
There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no‐development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument Importancia de la Especificación de Línea de Base en la Evaluación de Intervenciones de Conservación y la Obtención de Ninguna Pérdida Neta de la Biodiversidad  相似文献   

6.
The recent extnction of the Caribbean monk seal Monachus tropicalis has been considered an example of a human‐caused extinction in the marine environment, and this species was considered a driver of the changes that have occurred in the structure of Caribbean coral reef ecosystems since colonial times. I searched archaeological records, historical data, and geographic names (used as a proxy of the presence of seals) and evaluated the use and quality of these data to conclude that since prehistoric times the Caribbean monk seal was always rare and vulnerable to human predation. This finding supports the hypothesis that in AD 1500, the Caribbean monk seal persisted as a small fragmented population in which individuals were confined to small keys, banks, or isolated islands in the Gulf of Mexico and the Caribbean Sea. This hypothesis is contrary to the assumption that the species was widespread and abundant historically. The theory that the main driver of monk seal extinction was harvesting for its oil for use in the sugar cane industry of Jamaica during the 18th century is based primarily on anecdotal information and is overemphasized in the literature. An analysis of reported human encounters with this species indicates monk seal harvest was an occasional activity, rather than an ongoing enterprise. Nevertheless, given the rarity of this species and its restricted distribution, even small levels of hunting or specimen collecting must have contributed to its extinction, which was confirmed in the mid‐20th century. Some sources had been overlooked or only partially reviewed, others misinterpreted, and a considerable amount of anecdotal information had been uncritically used. Critical examination of archaeological and historical records is required to infer accurate estimations of the historical abundance of a species. In reconstructing the past to address the shifting baseline syndrome, it is important to avoid selecting evidence to confirm modern prejudices. Puntos de Referencia Cambiantes y la Extinción de la Foca Monje Caribeña  相似文献   

7.
Coral reef fisheries support the livelihoods of millions of people but have been severely and negatively affected by anthropogenic activities. We conducted a systematic review of published data on the biomass of coral reef fishes to explore how the condition of reef fisheries is related to the density of local human populations, proximity of the reef to markets, and key environmental variables (including broad geomorphologic reef type, reef area, and net productivity). When only population density and environmental covariates were considered, high variability in fisheries conditions at low human population densities resulted in relatively weak explanatory models. The presence or absence of human settlements, habitat type, and distance to fish markets provided a much stronger explanatory model for the condition of reef fisheries. Fish biomass remained relatively low within 14 km of markets, then biomass increased exponentially as distance from reefs to markets increased. Our results suggest the need for an increased science and policy focus on markets as both a key driver of the condition of reef fisheries and a potential source of solutions. Efectos Globales de la Densidad de Población Humana Local y la Distancia a los Mercados sobre la Condición de Pesquerías en Arrecifes de Coral  相似文献   

8.
With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non‐native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species’ native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non‐native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non‐native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self‐reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. Ciclo de Retroalimentación Positiva entre la Introducción de Especies Marinas No‐Nativas y el Cultivo de Ostras en Europa  相似文献   

9.
Environmental impact assessment (EIA) is a key mechanism for protecting threatened plant and animal species. Many species are not perfectly detectable and, even when present, may remain undetected during EIA surveys, increasing the risk of site‐level loss or extinction of species. Numerous methods now exist for estimating detectability of plants and animals. Despite this, regulations concerning survey protocol and effort during EIAs fail to adequately address issues of detectability. Probability of detection is intrinsically linked to survey effort; thus, minimum survey effort requirements are a useful way to address the risks of false absences. We utilized 2 methods for determining appropriate survey effort requirements during EIA surveys. One method determined the survey effort required to achieve a probability of detection of 0.95 when the species is present. The second method estimated the survey effort required to either detect the species or reduce the probability of presence to 0.05. We applied these methods to Pimelea spinscens subsp. spinescens, a critically endangered grassland plant species in Melbourne, Australia. We detected P. spinescens in only half of the surveys undertaken at sites where it was known to exist. Estimates of the survey effort required to detect the species or demonstrate its absence with any confidence were much higher than the effort traditionally invested in EIA surveys for this species. We argue that minimum survey requirements be established for all species listed under threatened species legislation and hope that our findings will provide an impetus for collecting, compiling, and synthesizing quantitative detectability estimates for a broad range of plant and animal species. Incorporación de la Capacidad de Detectar una Especie Amenazada a la Evaluación de Impacto Ambiental  相似文献   

10.
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost‐effectiveness of nesting site and at‐sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost‐effectiveness measures. Nesting beach protection was the most cost‐effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high‐bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low‐cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost‐effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost‐effective, particularly, if fisheries in the area are small and of little commercial value. Rentabilidad de Estrategias de Conservación Alternativas Aplicadas a Tortugas Laúd del Pacífico  相似文献   

11.
Eradication of introduced mammalian predators from islands has become increasingly common, with over 800 successful projects around the world. Historically, introduced predators extirpated or reduced the size of many seabird populations, changing the dynamics of entire island ecosystems. Although the primary outcome of many eradication projects is the restoration of affected seabird populations, natural population responses are rarely documented and mechanisms are poorly understood. We used a generic model of seabird colony growth to identify key predictor variables relevant to recovery or recolonization. We used generalized linear mixed models to test the importance of these variables in driving seabird population responses after predator eradication on islands around New Zealand. The most influential variable affecting recolonization of seabirds around New Zealand was the distance to a source population, with few cases of recolonization without a source population ≤25 km away. Colony growth was most affected by metapopulation status; there was little colony growth in species with a declining status. These characteristics may facilitate the prioritization of newly predator‐free islands for active management. Although we found some evidence documenting natural recovery, generally this topic was understudied. Our results suggest that in order to guide management strategies, more effort should be allocated to monitoring wildlife response after eradication. Conductores de la Recuperación de Poblaciones de Aves Marinas en Islas de Nueva Zelanda después de la Erradicación de Depredadores  相似文献   

12.
Measures aimed at conservation or restoration of ecosystems are often seen as net‐cost projects by governments and businesses because they are based on incomplete and often faulty cost‐benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit‐cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst‐case scenario) to as much as 35:1 (grasslands, best‐case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high‐yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas  相似文献   

13.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   

14.
Coastal areas are among the world's most productive and highly affected ecosystems. Centuries of human activity on coastlines have led to overexploitation of marine predators, which in turn has led to cascading ecosystem‐level effects. Human effects and approaches to mediating them, however, differ regionally due to gradients in biotic and abiotic factors. Salt marsh die‐off on Cape Cod, Massachusetts (U.S.A.), triggered by a recreational‐fishing‐induced trophic cascade that has released herbivorous crabs from predator control, has been ongoing since 1976. Similar salt marsh die‐offs have been reported in Long Island Sound and Narragansett Bay (U.S.A.), but the driving mechanism of these die‐offs has not been examined. We used field experiments to assess trophic interactions and historical reconstructions of 24 New England marshes to test the hypotheses that recreational fishing and predator depletion are a regional trigger of salt marsh die‐off in New England and that die‐offs in Long Island Sound and Narragansett Bay are more recent than those on Cape Cod. Predator depletion was the general trigger of marsh die‐off and explained differences in herbivorous crab abundance and the severity of die‐off across regions. Die‐offs in Long Island Sound and Narragansett Bay are following a trajectory similar to die‐off on Cape Cod, but are approximately 20 years behind those on Cape Cod. As a result, die‐off currently affects 31.2% (SE 2.2) of low‐marsh areas in Long Island Sound and Narragansett Bay, less than half the severity of die‐off on Cape Cod. Our results contribute to the growing evidence that recreational fishing is an increasing threat to coastal ecosystems and that studying the effects of human activity at regional scales can provide insight into local effects and aid in early detection and potential remediation. Ontogenia Regional de un Incremento en la Mortandad en una Marisma Salada de Nueva Inglaterra  相似文献   

15.
16.
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   

17.
Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land‐use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like‐for‐like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like‐for‐like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required. Compensación de los Impactos de la Minería para Obtener Ninguna Pérdida Neta de la Vegetación Nativa  相似文献   

18.
Marine fish stocks are in many cases extracted above sustainable levels, but they may be protected through restricted‐use zoning systems. The effectiveness of these systems typically depends on support from coastal fishing communities. High management costs including those of enforcement may, however, deter fishers from supporting marine management. We incorporated enforcement costs into a spatial optimization model that identified how conservation targets can be met while maximizing fishers’ revenue. Our model identified the optimal allocation of the study area among different zones: no‐take, territorial user rights for fisheries (TURFs), or open access. The analysis demonstrated that enforcing no‐take and TURF zones incurs a cost, but results in higher species abundance by preventing poaching and overfishing. We analyzed how different enforcement scenarios affected fishers’ revenue. Fisher revenue was approximately 50% higher when territorial user rights were enforced than when they were not. The model preferentially allocated area to the enforced‐TURF zone over other zones, demonstrating that the financial benefits of enforcement (derived from higher species abundance) exceeded the costs. These findings were robust to increases in enforcement costs but sensitive to changes in species’ market price. We also found that revenue under the existing zoning regime in the study area was 13–30% lower than under an optimal solution. Our results highlight the importance of accounting for both the benefits and costs of enforcement in marine conservation, particularly when incurred by fishers. Justificación de los Costos de Aplicación en la Asignación Espacial de Zonas Marinas  相似文献   

19.
A vast number of prioritization schemes have been developed to help conservation navigate tough decisions about the allocation of finite resources. However, the application of quantitative approaches to setting priorities in conservation frequently includes mistakes that can undermine their authors’ intention to be more rigorous and scientific in the way priorities are established and resources allocated. Drawing on well‐established principles of decision science, we highlight 6 mistakes commonly associated with setting priorities for conservation: not acknowledging conservation plans are prioritizations; trying to solve an ill‐defined problem; not prioritizing actions; arbitrariness; hidden value judgments; and not acknowledging risk of failure. We explain these mistakes and offer a path to help conservation planners avoid making the same mistakes in future prioritizations. Seis Errores Comunes en la Definición de Prioridades de Conservación  相似文献   

20.
Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. Una Guía para Entender la Investigación de Ciencias Sociales para las Ciencias Naturales Katie Moon  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号