首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Binelli A  Ricciardi F  Riva C  Provini A 《Chemosphere》2005,61(8):1074-1082
The increase of ethoxyresorufin dealkylation (EROD) and the inhibition of acetylcholinesterase (AChE) as biomarkers have been commonly used in vertebrates for the persistent organic pollutants (POPs) biomonitoring of aquatic environments, but very few studies have been performed for invertebrates. Previous researches demonstrated the interference due to some chemicals on EROD and AChE activities of the freshwater bivalve Zebra mussel (Dreissena polymorpha) in laboratory and field studies, showing its possible use for the screening of POP effects. We investigated the contamination of the Italian sub-alpine great lakes (Maggiore, Lugano, Como, Iseo, Garda) by the biomarker approach on Zebra mussel specimens collected at 17 sampling sites with different morphometric characteristics and anthropization levels. Results showed a homogeneous contamination of AChE inhibitors in Lake Garda, Maggiore, Como and Iseo with values ranging from 0.5 to 3 nmol/min/mg proteins and with an average inhibition of about 66% to controls. The planar compounds pollution, able to activate the EROD activity, seems higher in some sampling stations of Lake Garda, Como and Iseo (2-4 pmol/min/mg proteins) than that measured in Lake Lugano (1.5-3 pmol/min/mg proteins). On the contrary, the enzyme activity in Lake Maggiore showed an interesting opposite effect of AhR-binding compounds and trace metals. Finally, the possible use of Zebra mussel specimens maintained at laboratory conditions as controls against the selection of the less polluted sampling site is discussed.  相似文献   

2.
This study examined the effects of three widely used pesticides that have been previously detected in aquatic systems neighbouring agricultural fields on the early-life stages of the zebrafish Danio rerio. Tests involving single exposures and binary combinations of the s-triazine herbicides (atrazine and terbuthylazine) and the organophosphate insecticide chlorpyrifos were performed. Several endpoints, such as swimming behaviour, morphological abnormalities and mortality, were studied. In addition, the inhibition of acetylcholinesterase (AChE) activity was investigated in order to evaluate the mode of action and toxicity of chlorpyrifos in the presence of these herbicides. Results indicate that both binary mixtures elicited synergistic responses on the swimming behaviour of zebrafish larvae. Moreover, although the herbicides were not effective inhibitors of the AChE on their own, a synergistic inhibition of the enzyme activity was obtained by exposure to mixtures with chlorpyrifos. We observed a correlation between impairment of swimming behaviour of the larvae and inhibition of AChE activity. This study supports previous studies concerning the risk assessment of mixtures since the toxicity may be underestimated when looking only at the single toxicants and not their mixtures.  相似文献   

3.
Specimens of sea bass (Dicentrarchus labrax) were placed in cages for 1 month in spring and autumn at different locations in the Bay of Cannes (NW Mediterranean). Biochemical markers evaluated were: ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities in fish livers and acetylcholinesterase (AChE) activity in fish muscle. EROD and GST activities were higher in front of the outlet for the wastewater plant of Cannes and in the harbour than outside the marina. High EROD and GST activities may be induced by petrol hydrocarbons and/or polychlorinated biphenyls (PCBs). AChE was low in the muscles of the fish caged in the harbour compared with samples from the other cages. Low AChE activity could suggest the presence of organophosphorus and carbamate compounds in seawater from the harbour. Mussels (Mytilus galloprovincialis) were caged off Cannes for the same periods as the fishes. Heavy metal, metallothionein (MT) concentrations and lysosomal membrane stability were evaluated in the digestive gland of the mussels. Results show low heavy metal and MT concentrations, implying low metal concentrations in the surrounding waters. High lysosomal membrane stability revealed a good physiological status of these animals after caging. The whole set of data indicates that seawater in the Bay of Cannes appeared to be unpolluted as regards pollutants which may induce the measured biomarkers, except in restricted areas.  相似文献   

4.
This study was undertaken to investigate the effects of sublethal concentration of three different classes of insecticides (carbamate, organophosphate, and pyrethroid compounds) on the freshwater fish Corydoras paleatus. For this purpose, fish were exposed for 96 hours to commercial pesticides. Different biomarkers were analyzed as levels of lipid peroxidation (LPO), piscine micronucleus test, and enzymatic activities of catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE). The brain AChE was inhibited with carbaryl and methyl parathion, but no inhibition was observed with deltamethrin. The insecticides did not cause oxidative stress or genotoxic effects at the tested concentrations. Further studies are needed to elucidate the biotransformation of Corydoras paleatus insecticides and a possible resistance mechanism.  相似文献   

5.
The aim of this work was to study the pharmacokinetic behavior and the inhibitory effect of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities of chlorpyrifos (CPF) in steer cattle after pour-on administration. Determination of cholinesterase activity in plasma and erythrocyte was carried out according to Ellman kinetic method. CPF was analyzed by gas chromatography. AChE was the predominant form of cholinesterase analyzed, with low levels of BChE in plasma. Following the treatment with CPF, the maximum inhibitory effect on AChE or BChE were 50.88 ± 11.57 and 42.66 ± 12.01%, respectively. The chlorpyrifos plasma concentrations observed were low and they presented a high variability. Chlorpyrifos peak plasma concentration (10.42 ± 4.76 μ g/L) was reached at 8.42 ± 13.97 h. The pesticide was not detected in plasma after 48 h post treatment. The values of area under the curve (AUC) were 118.48 ± 87.46 μ g· h/L and mean resistance time (MRT) were 13.38 ± 10.41 h. The pour-on exposure to the organophosphate chlorpyrifos significantly reduced AChE and BChE activity in steer cattle and the recovery was not reached on 50 days post-treatment.  相似文献   

6.
Juveniles of the estuarine fish Pomatoschistus microps were collected from autumn 2001 to summer 2002 in five stations along the Portuguese Northwest coast with different types and/or levels of environmental contamination: two reference sites with low levels of contamination (R1 and R2) and three differently impacted areas with higher levels of contamination. UI is located in an estuary under the influence of urban and industrial effluents, AA in a channel that receives intensive agriculture run-off and IE in a highly impacted industrial area. The activity of the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH), 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferases (GST) were used as environmental biomarkers on P. microps. A significant seasonality effect on all the enzymatic activities was found, lower levels being registered in winter and spring on AChE, in autumn on LDH, and in winter on GST and EROD. The battery of biomarkers used was capable of discriminating sites with different types and/or levels of contamination, R1 and UI being the highest discriminated (91.7% and 66.7%, respectively). At R1 significantly lower levels of AChE and LDH were found, and EROD was significantly inducted at UI. Furthermore, IE presented higher levels of GST, and R2 and AA an inhibition of AChE in winter and spring. The results indicated that the battery of biomarkers used in this study seems to be a useful tool to distinguish between different types of environmental contamination in estuarine systems, and that P. microps is a suitable species to be used as bioindicator.  相似文献   

7.
The rainbow trout fish cell lines RTG-2 and RTL-W1 were used to determine the cytotoxic effects of the pesticides bifenthrin, cypermethrin, cyhalothrin, lambda-cyhalothrin, quinalphos and chlorpyrifos. Cytotoxicity was measured by EROD and beta-Gal enzymatic activities, the neutral red (NR) uptake assay, and the FRAME KB protein (KBP) assay. The beta-Gal activity was unaffected by the pesticide exposure. The EROD activity was induced by cyhalothrin and lambda-cyhalothrin (RTG-2 and RTL-W1) and by bifenthrin (RTL-W1). Dose dependent inhibition responses were observed for EROD activity in cells exposed to quinalphos (RTL-W1) and chlorpyrifos (RTG-2 and RTL-W1). RTL-W1 offered a better response for EROD induction. The EC50 values on EROD endpoint were more sensitive than NR and KBP. The acute fish toxicity of chlorpyrifos and quinalphos depends highly on the species; the species sensitivity distributions cover several orders of magnitude and the values obtained for EROS were within the lowest part of the reported ranges.  相似文献   

8.
Buet A  Banas D  Vollaire Y  Coulet E  Roche H 《Chemosphere》2006,65(10):1846-1858
A screening of relevant biomarkers was carried out in order to evaluate metabolic and cellular damages in European eels exposed to a non-point source contamination by persistent organic pollutants (POP) such as polycyclic aromatic hydrocarbons (PAH) and organochlorine compounds (OC) in a protected area, the Nature Reserve of Camargue (France). Investigations were focused on metabolic responses including detoxification mechanisms (biotransformation, antioxidant process), energy requirements and enzymatic membrane markers either involved in neuronal conduction (acetylcholinesterase, AChE) or in osmoregulation and energy metabolism (ATPases). The hepatic and muscular glycogen rates seemed to be suitable biomarkers as well as three hepatic activities involved in the protection against oxyradicals: catalase, glutathione peroxidase (SeGPx) and superoxide dismutases (SOD). The muscle and gill ATPases as well as the muscle and brain AChE showed more significant relevance in terms of biomarkers than the biotransformation enzymes: ethoxyresorufine-O-deethylase (EROD) and uridine diphospho-glucuronyl transferase (UDPGT). However, most of these enzymatic activities depend on numerous abiotic factors, which must be taken into account in such a biomarker assessment approach. Our study provides some conclusive elements to approve the use in situ of biomarkers developed from laboratory studies. It also raises a question regarding the location of contaminant impregnation in fish organ, in relation with age, development status or mode of contamination, and its influence on biomarker response. If the relevance of membrane indicators is confirmed, this study provides an original statement of the extent of the ecotoxicological threat for the aquatic species in a protected area, due to the occurrence of POP in the cell membranes.  相似文献   

9.
In this study, the acute toxicity and the in vivo effects of commercial chlorpyrifos, carbofuran and glyphosate formulations on cholinesterase (ChE), glutathione S-transferase (GST) and lactate dehydrogenase (LDH) activities of the mosquitofish (Gambusia yucatana) were investigated. In a first phase of the study, head and muscle ChE were characterized with different substrates (acetylthiocholine iodide, s-butyrylthiocholine iodide and propionylthiocholine iodide) and the selective inhibitors eserine hemisulfate, 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide (BW284C51), and N,N'-diisopropylphosphorodiamic acid (iso-OMPA). The results obtained suggest that the enzyme present in both head and muscle of G. yucatana is mainly acetylcholinesterase (AChE). Acute toxicity was evaluated by exposing fish to several concentrations of single pesticides and of a mixture of chlorpyrifos/glyphosate. LC50 values were determined after 96 h of exposure, except in the case of carbofuran for which LC50 was calculated after 24 h since almost all the fish died within this period. LC50 values were 0.085 mg/l for chlorpyrifos, 17.79 mg/l for glyphosate, 0.636 mg/l for carbofuran and 0.011 mg/l for the chlorpyrifos/glyphosate mixture. A Toxic Unit approach was used to compare the toxicity of chlorpyrifos and glyphosate when occurring in a mixture with their toxicities as single compounds. Synergistic effects of chlorpyrifos and glyphosate when present in a mixture were found. At the end of each bioassay (24 h for carbofuran, 96 for the other substances/mixture), effects on biomarkers were analyzed. Muscle LDH activity was not altered by any of the three pesticides tested. Gill GST activity was significantly inhibited (40%) by carbofuran after 24 h of exposure to concentrations equal or higher than 0.06 mg/l. ChE muscle and head activity were significantly inhibited (50% and 30%, respectively) by carbofuran at concentrations equal or higher than 0.25 mg/l. Chlorpyrifos induced a significant inhibition of both muscle and head ChE (80% and 50%, respectively) after 96 h of exposure to concentrations equal or higher than 0.05 mg/l. Carbofuran did not induce significant alterations of fish ChE. The ChE EC50 determined for chlorpyrifos/glyphosate mixture (0.070 mg/l) was higher than the correspondent value calculated for chlorpyrifos alone (0.011 mg/l) suggesting an antagonistic effect of glyphosate on ChE inhibition by chlorpyrifos. ChE activity of G. yucatana seems to be a good biomarker to diagnose the exposure of wild populations of this species exposed to anticholinesterase pesticides.  相似文献   

10.
The study was carried out from spring 1999 to spring 2001 to monitor the residue levels of organophosphorus pollutants (OPP) in aquatic environment of the drainage canal surrounding a pesticide factory at Damietta Governorate. Water, sediment, and fish samples were collected at six different seasonal periods. OPPs were analyzed by GLC and confirmed using GC-MS. Chlorpyrifos, chlorpyrifos-methyl, malathion, diazinon, pirimiphos-methyl and profenofos were detected in most samples. Chlorpyrifos was dominant in all water and sediment samples. It was ranged from 24.5 to 303.8 and 0.9 to 303.8 ppb in water and sediment samples, respectively. Diazinon level was slightly similar to chlorpyrifos in fish samples. Data based on the grand total concentration of OPP showed that the most polluted samples were collected either at spring 1999 or autumn 2000. They were 675.5 and 303.8 ppb in water samples and 43.0 and 52.2 ppb in fish collected at spring 1999 and autumn 2000, respectively. The obtained results are in parallel to that found in case of cholinesterase activity where the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was declined at these seasonal period. The activity levels of AChE and BuChE were found to be 77.18% and 59.67% of control at spring 1999 and 78.62% and 85.80% of control, at autumn 2000, respectively. Thus, AChE and BuChE could be used as biomarkers for tracing and biomonitoring OPP pollution.  相似文献   

11.
Isolation of the polychlorinated biphenyls (PCB's) from sea mullet (Mugil cephalus) collected in the Brisbane River estuary indicated that these corresponded approximately to the Arochlor Grade 1260, although minor amounts of Grade 1254 were present. However the composition of the isolates similar to the 1260 Grade in all cases exhibited marked differences between the proportions of individual components present in the original mixture as compared to the mixture found in the fish. The number of chlorines in a PCB compound has an influence on bioconcentration, but with isomers it is suggested that variable uptake of the different PCB's occurs principally as a result of steric effects relating to the orientation of the two phenyl rings and the patterns of substitution of chlorine. A Steric Effect Coefficient has been empirically developed which correlates closely with relative uptake of PCB isomers.  相似文献   

12.
13.
He X  Nie X  Wang Z  Cheng Z  Li K  Li G  Hung Wong M  Liang X  Tsui MT 《Chemosphere》2011,84(10):1422-1431
Organic pollutants, heavy metals and pharmaceuticals are continuously dispersed into the environment and have become a relevant environmental emerging concern. In this study, a situ assay to assess ecotoxicity of mixed pollutants was carried out in three typical sites with different priority contaminations in Guangzhou, China. Chemical analysis of organic pollutants, metals and quinolones in three exposure sites were determined by GC-ECD/MS, ICP-AES and HPLC, as well as, a combination of biomarkers including: ethoxyresorufin O-deethylase (EROD); aminopyrine N-demethylase (APND); erythromycin N-demethylase (ERND); glutathione S-transferase (GST); malondialdehyde (MDA); CYP1A; and P-glycoprotein (P-gp) mRNA expressions were evaluated in Mugilogobius abei. Results of chemical analysis in sediment samples revealed that the dominant chemicals were organic pollutants and heavy metals in Huadi River while quinolones in the pond. Bioassays indicated that differences among sites were in relation to some specific biomarkers. EROD and GST activities significantly increased after 72 h in situ exposure, but no difference was observed among the exposure sites. APND, ERND and MDA exhibited dissimilar change patterns for different priority pollutants. CYP1A and P-gp mRNA expressions were significantly induced at all exposure sites, whilst P-gp activity was typical for S2 with the highest levels of quinolones. The molecular biomarkers seemed to be more susceptible than enzyme activities. These assays confirmed the usefulness of applying a large array of various combined biomarkers at different levels, in assessing the toxic effects of mixed pollutants in a natural aquatic environment.  相似文献   

14.
The main objective of the present study was to investigate possible links between biomarkers and swimming performance in the estuarine fish Pomatoschistus microps acutely exposed to metals (copper and mercury). In independent bioassays, P. microps juveniles were individually exposed for 96 h to sub-lethal concentrations of copper or mercury. At the end of the assays, swimming performance of fish was measured using a device specially developed for epibenthic fish (SPEDE). Furthermore, the following biomarkers were measured: lipid peroxidation (LPO) and the activity of the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH), glutathione S-transferases (GST), 7-ethoxyresorufin-O-deethylase (EROD), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx). LC50s of copper and mercury (dissolved throughout metal concentrations) at 96 h were 568 μg L−1 and 62 μg L−1, respectively. Significant and concentration-dependent effects of both metals on swimming resistance and covered distance against water flow were found at concentrations equal or higher than 50 μg L−1 for copper and 3 μg L−1 for mercury (dissolved throughout metal concentrations). These results indicate that SPEDE was efficacious to quantify behavioural alterations in the epibenthic fish P. microps at ecologically relevant concentrations. Significant alterations by both metals on biomarkers were found including: inhibition of AChE and EROD activities, induction of LDH, GST and anti-oxidant enzymes, and increased LPO levels, with LOEC values ranging from 25 to 200 μg L−1 for copper and from 3 to 25 μg L−1 for mercury (dissolved throughout metal concentrations). Furthermore, significant and positive correlations were found between some biomarkers (AChE and EROD) and behavioural parameters, while negative correlations were found for others (LPO, anti-oxidant enzymes and LDH) suggesting that disruption of cholinergic function through AChE inhibition, decreased detoxification capability due to EROD inhibition, additional energetic demands to face chemical stress, and oxidative stress and damage may contribute to decrease the swimming performance of fish. Since a reduced swimming capability of fish may reduce their ability to capture preys, avoid predators, and interfere with social and reproductive behaviour, the exposure of P. microps to copper and/or mercury concentrations similar to those tested here may decrease the fitness of wild populations of this species.  相似文献   

15.
Anti-cholinesterase insecticides constitute a major portion of modern synthetic pesticides and the assessment of cholinesterase (ChE) inhibition is widely used as a specific biomarker for evaluating the exposure of non-target organisms to these pollutants. However, most studies on this biomarker were developed on vertebrates and among invertebrates, gastropod mollusks are rarely used. Gastropods are important members of aquatic habitats and therefore present a high ecological relevance for freshwater ecosystems. In this context, ChE activities were characterized in two freshwater gastropod mollusks, Potamopyrgus antipodarum and Valvata piscinalis, in order to ascertain their value as sentinel species. Firstly, characterization of ChE activities was performed using different substrates (acetylcholine iodide, butyrylcholine iodide and propionylcholine iodide) and specific inhibitors (eserine, iso-OMPA and BW284c51). Secondly, in vivo effect of a widely used organophosphate insecticide, chlorpyrifos, was tested on ChE activity in both species. Results suggested that P. antipodarum possesses two isoforms of cholinesterases, one isoform which properties are intermediate between an acetyl and a propionyl ChE, and one minor isoform which correspond to a butyryl ChE, while V. piscinalis seems to possess only one isoform which displays typical properties of an acetyl ChE. Chlorpyrifos induced no effect on V. piscinalis ChE. In contrast, P. antipodarum activity was significantly decreased by environmental realistic chlorpyrifos concentrations (2.86 and 14.2 nM) after seven days of contact. The present study suggests that P. antipodarum may be employed as a biological indicator for assessing pesticide contamination.  相似文献   

16.
The study highlights the potential of the black-chinned tilapia to be used as a sentinel to assess environmental contaminants based on the use of a set of biomarkers. The usefulness of fish species as sentinels for assessing aquatic environment contamination was tested using a set of biomarkers in Senegalese environments characterized by multi-pollution sources. The black-chinned tilapia (Sarotherodon melanotheron) was selected as a sentinel because of its abundance, wide distribution in all coastal aquatic ecosystems and physiological properties. The potential influence of confounding factors such as salinity on biomarker in the tilapia has been examined. Individuals were sampled during two seasons (dry and wet) in eight sites characterized by various degrees of anthropogenic contamination and different salinities (from 0 to 102?psu). Biomarkers??including growth rate (GR), condition factor (CF), biotransformation enzymes such as 7-ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), lipid peroxidation (TBARS) and acetylcholinesterase (AChE)??were measured. Chemical contaminant [polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs)] levels showed different sources of contamination with relatively high concentrations of PAHs in the Hann Bay and Foundiougne locations. The most sensitive biomarker present in different sites according to the principal component analysis is EROD. Few variations of the AChE activity and TBARS levels were found. No clear relationship was found between biomarker responses and salinity, but GR and CF were lower in hypersaline conditions. Tilapia is responsive to environmental contaminants such as PAHs, OCPs and PCBs. The S. melanotheron multiparametric approach showed a better discrimination of sites.  相似文献   

17.
The joint toxicity of chlorpyrifos and atrazine was compared to that of chlorpyrifos alone to discern any greater than additive response using both acute toxicity testing and whole-body residue analysis. In addition, acetylcholinesterase (AChE) inhibition and biotransformation were investigated to evaluate the toxic mode of action of chlorpyrifos in the presence of atrazine. The joint toxicity of atrazine and chlorpyrifos exhibited no significant difference in Lepomis macrochirus compared to chlorpyrifos alone; while studies performed with Pimephales promelas and Chironomus tentans, did show significant differences. AChE activity and biotransformation showed no significant differences between the joint toxicity of atrazine and chlorpyrifos and that of chlorpyrifos alone. From the data collected, the combination of atrazine and chlorpyrifos pose little additional risk than that of chlorpyrifos alone to the tested fish species.  相似文献   

18.
Mature male dab (Limanda limanda) acclimated at 10° and 16°C were orally administered a single dose of 0.5 mg/kg 3,3′,4,4′-tetrachlorobiphenyl (CB77). At both temperatures, levels of cytochrome P450 1A (CYP1A) protein and 7-ethoxyresorufin O-deethylase (EROD) activity showed a two to six fold induction 40 days after CB77 treatment compared to control groups. Maximum responses of both EROD activity and CYP1A protein for the warm-acclimated fish were observed at 5 days after treatment. For the cold-acclimated fish a slow, progressive elevation for both EROD activity and CYP1A protein was observed and maximum responses were measured 40 days after treatment. Absolute EROD activity and CYPIA protein levels of fish from both temperatures were equally high at 40 days after treatment. Since in the control groups EROD activity and CYP1A protein levels were higher in the cold-acclimated fish, the magnitude of induction was higher in the warm acclimated ones. The highest concentrations of CB77 in muscle of fish from both temperatures were found at 5 and 10 days after treatment. The liver somatic index (LSI) showed 1.5 fold significantly higher values for the fish acclimated at 10°C.  相似文献   

19.
This paper reports the construction of the gold/mercaptobenzothiazole/polyaniline/acetylcholinesterase/polyvinylacetate (Au/ MBT/PANI/AChE/PVAc) thick-film biosensor for the determination of certain organophosphate pesticide solutions in selected aqueous organic solvent solutions. The Au/MBT/PANI/AChE/PVAc electrocatalytic biosensor device was constructed by encapsulating acetylcholinesterase (AChE) enzyme in the PANI polymer composite, followed by the coating of poly(vinyl acetate) (PVAc) on top to secure the biosensor film from disintegration in the organic solvents evaluated. The electroactive substrate called acetylthiocholine (ATCh) was employed to provide the movement of electrons in the amperometric biosensor. The voltammetric results have shown that the current shifts more anodically as the Au/MBT/PANI/AChE/PVAc biosensor responded to successive acetylthiocholine (ATCh) substrate addition under anaerobic conditions in 0.1 M phosphate buffer, KCl (pH 7.2) solution and aqueous organic solvent solutions. For the Au/MBT/PANI/AChE/PVAc biosensor, various performance and stability parameters were evaluated. These factors include the optimal enzyme loading, effect of pH, long-term stability of the biosensor, temperature stability of the biosensor, the effect of polar organic solvents, and the effect of non-polar organic solvents on the amperometric behavior of the biosensor. The biosensor was then applied to detect a series of 5 organophosphorous pesticides in aqueous organic solvents and the pesticides studied were parathion-methyl, malathion and chlorpyrifos. The results obtained have shown that the detection limit values for the individual pesticides were 1.332 nM (parathion-methyl), 0.189 nM (malathion), 0.018 nM (chlorpyrifos).  相似文献   

20.
Wu H  Zhang R  Liu J  Guo Y  Ma E 《Chemosphere》2011,83(4):599-604
The study was undertaken to evaluate the effects of malathion and chlorpyrifos on acetylcholinesterase (AChE), esterase (EST) activity and antioxidant system after topical application with different concentration to Oxya chinensis. The results showed that malathion and chlorpyrifos inhibited EST, AChE activity and increased malondialdehyde (MDA) contents. A change in superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activity combined with reduced glutathione (GSH) and total glutathione (tGSH) contents was found in O. chinensis after malathion and chlorpyrifos treatments. Malathion and chlorpyrifos increased SOD and CAT activity compared with the control. With the concentrations increasing, SOD and CAT activity showed the similar tendency, namely, SOD and CAT activity increased at the lower concentrations and decreased at the higher concentrations. The results showed that malathion and chlorpyrifos decreased significantly GR activity. GST and GPx activity at the studied concentrations of chlorpyrifos was lower than that of the control. However, no significance was observed. GPx and GST activity in malathion treated grasshoppers showed a biphasic response with an initial increase followed by a decline in its activity. Malathion and chlorpyrifos decreased GSH contents and the ratio of GSH/GSSG. The present findings indicated that the toxicity of malathion and chlorpyrifos might be associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号