首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessing the Effects of Climate Change on Aquatic Invasive Species   总被引:4,自引:0,他引:4  
Abstract:  Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.  相似文献   

2.
The European Water Framework Directive (WFD) establishes a well differentiated typology of water bodies on the basis of scientific and biological criteria. For coastal waters, such criteria have long been established, while for transitional waters they are still under discussion. One of the difficulties when applying the WFD to coastal lagoons is to include them in only one of these categories, and while there is no doubt about the nature of estuaries as transitional waters, there is some controversy concerning lagoons. To what extent, reference conditions may be similar for estuaries and lagoons, or whether features common to all coastal lagoons are more important for differentiating them from other water bodies than the fact that there is (or is not) any fresh water influence, is something that remains unclear and is discussed in this work. Coastal lagoons and estuaries form part of a continuum between continental and marine aquatic ecosystems. Shelter, strong boundaries or gradients with adjacent ecosystems, anomalies in salinity regarding freshwater or marine ecosystems, shallowness, etc. all contribute to the high biological productivity of estuaries and lagoons and determine common ecological guilds in the species inhabiting them. On the other hand, fresh water influence, the spatial organization of gradients and environmental variability (longitudinal one-dimensional gradients in estuaries versus complex patterns and three-dimensional heterogeneity in lagoons) constitute the main differences, since these factors affect both the species composition and the dominance of certain ecological guilds and, probably, the system’s complexity and homeostatic capability. In the context of the WFD, coastal lagoons and estuaries are closer to each other than they are to continental or marine waters, and, on the basis of the shared features, they could be intercalibrated and managed together. However, coastal lagoons cannot be considered transitional waters according to the present definition. To assume that fresh water influence is an inherent characteristic to these ecosystems could lead to important changes in the ecological organization and functioning of coastal lagoons where natural fresh water input is low or null. In our opinion, the present day definition of transitional waters should be changed substituting the criterion of fresh water influence by another based on common features, such as relative isolation and anomalies in salinity in water bodies with marine influence. Otherwise, coastal lagoons should be considered a particularly characteristic type of water mass for establishing reference conditions of ecological status.  相似文献   

3.
Capers RS  Selsky R  Bugbee GJ  White JC 《Ecology》2007,88(12):3135-3143
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion.  相似文献   

4.
Non‐native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer‐reviewed literature to evaluate responses of arthropod communities and functional groups to non‐native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty‐two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web‐building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities. Efectos de las Plantas Invasoras sobre los Artrópodos  相似文献   

5.

Microplastic pollution has recently been identified as a major issue for the health of ecosystems. Microplastics have typically sizes of less than 5 mm and occur in various forms, such as pellets, fibres, fragments, films, and granules. Mangroves and coral reefs are sensitive and restricted ecosystems that provide free ecological services such as coastal protection, maintaining natural cycles, hotspots of biodiversity and economically valuable goods. However, urbanization and industrial activities have started contaminating even these preserved ecosystems. Here we review sources, occurrence, and toxicity of microplastics in the trophic levels of mangrove and coral reef ecosystems. We present detection methods, such as microscopic identification and spectroscopy. We discuss mitigating measures that prevent the entry of microplastics into the marine environment.

  相似文献   

6.
Scientific consensus shows that the changes related to climate change are already occurring and will intensify in the future. This will likely result in significant alterations to coastal ecosystems such as mangroves, increase coastal hazards and affect lifestyles of coastal communities. There is increasing speculation that mangrove, a socio-economically important ecosystem, will become more fragile and sensitive to uncertain climate variability such as sea level rise. As a result, mangrove-dependent societies may find themselves trapped in a downward spiral of ecological degradation in terms of their livelihoods and life security. Strengthening the resilience capacity of coastal communities to help them cope with this additional threat from climate change and to ensure sustainability calls for immediate action. In this context, this paper critically examines the regional implications of expected sea level rise and threats to mangrove-dependent communities through a case study approach. The main objective is to highlight the requirement for climate change communication and education to impart information that will fulfil three expectations: (1) confer understanding; (2) assess local inference on climate change through a participatory approach; and (3) construct a framework for climate change awareness among mangrove-dependent communities through community-based non-formal climate change education. This scale of approach is attracting increasing attention from policymakers to achieve climate change adaptation and derive policies from a social perspective.  相似文献   

7.
Altieri AH 《Ecology》2008,89(10):2808-2818
Natural stress gradients can reduce predation intensity and increase prey abundances. Whether the harsh conditions of anthropogenic habitat degradation can similarly reduce predation intensity and structure community dynamics remains largely unexplored. Oxygen depletion in coastal waters (hypoxia) is a form of degradation that has recently emerged as one of the greatest threats to coastal ecosystems worldwide due to increased rates of eutrophication and climate change. I conducted field experiments and surveys to test whether relaxed predation could explain the paradoxically high abundance of clams that have sustained a fishery in a degraded estuary with chronic hypoxic conditions. Hypoxia reduced predation on all experimental species but enhanced the long-term survivorship of only sufficiently hypoxia-tolerant prey due to periodic extreme conditions. As a consequence, only the harvested quahog clam (Mercenaria mercenaria) thrived in hypoxic areas that were otherwise rendered dead zones with depauperate diversity and low abundances of other species. This suggests that enhanced populations of some key species may be part of a predictable nonlinear community response that sustains ecosystem services and masks overall downward trends of habitat degradation.  相似文献   

8.
Human pressure has been exponentially growing during recent decades in coastal areas, which have led to drastic losses of biodiversity in coastal ecosystems. The current conservation status of many coastal plant species is directly related to a lack of environmental criteria in the urban planning of coastal areas over recent decades. This study aimed to evaluate the evolution, over the last 9 years, of the conservation status of various populations of the endangered plant Glaucium flavum, exploring the extent to which human pressure and different management strategies practiced in the coastal areas where the populations are established have affected the conservation status of the species. The populations analysed have evolved in a different manner over the last 9 years, as have their threat factors, and a relationship was evident between their conservation status and the evolution of these different threat factors. Our results indicate that an appropriate planning of local management actions, such as the installation of walkways or the successful eradication of invasive species, may be determinant factors for successful conservation of the coastal vegetation. The presence of species that are sensitive to slight changes in the ecosystem, and the main factors that govern the plant performance of these species, must be given full consideration in decision-making processes of coastal planning and management.  相似文献   

9.
Abstract: Consideration of the social values people assign to relatively undisturbed native ecosystems is critical for the success of science‐based conservation plans. We used an interview process to identify and map social values assigned to 31 ecosystem services provided by natural areas in an agricultural landscape in southern Australia. We then modeled the spatial distribution of 12 components of ecological value commonly used in setting spatial conservation priorities. We used the analytical hierarchy process to weight these components and used multiattribute utility theory to combine them into a single spatial layer of ecological value. Social values assigned to natural areas were negatively correlated with ecological values overall, but were positively correlated with some components of ecological value. In terms of the spatial distribution of values, people valued protected areas, whereas those natural areas underrepresented in the reserve system were of higher ecological value. The habitats of threatened animal species were assigned both high ecological value and high social value. Only small areas were assigned both high ecological value and high social value in the study area, whereas large areas of high ecological value were of low social value, and vice versa. We used the assigned ecological and social values to identify different conservation strategies (e.g., information sharing, community engagement, incentive payments) that may be effective for specific areas. We suggest that consideration of both ecological and social values in selection of conservation strategies can enhance the success of science‐based conservation planning.  相似文献   

10.
Globalization of trade and travel has facilitated the spread of non-native species across the earth. A proportion of these species become established and cause serious environmental, economic, and human health impacts. These species are referred to as invasive, and are now recognized as one of the major drivers of biodiversity change across the globe. As a long-time centre for trade, Europe has seen the introduction and subsequent establishment of at least several thousand non-native species. These range in taxonomy from viruses and bacteria to fungi, plants, and animals. Although invasive species cause major negative impacts across all regions of Europe, they also offer scientists the opportunity to develop and test theory about how species enter and leave communities, how non-native and native species interact with each other, and how different types of species affect ecosystem functions. For these reasons, there has been recent growth in the field of invasion biology as scientists work to understand the process of invasion, the changes that invasive species cause to their recipient ecosystems, and the ways that the problems of invasive species can be reduced. This review covers the process and drivers of species invasions in Europe, the socio-economic factors that make some regions particularly strongly invaded, and the ecological factors that make some species particularly invasive. We describe the impacts of invasive species in Europe, the difficulties involved in reducing these impacts, and explain the policy options currently being considered. We outline the reasons that invasive species create unique policy challenges, and suggest some rules of thumb for designing and implementing management programs. If new management programs are not enacted in Europe, it is inevitable that more invasive species will arrive, and that the total economic, environmental, and human health impacts from these species will continue to grow.  相似文献   

11.
Current threats of invasive species have significant implications for ecological systems. Given their potential impacts, invasive species have been the subject of extensive empirical and theoretical studies. However, these studies have tended to focus on species that produce highly visible ecological and economic impacts. In our study, we take a step back from focusing on these high-impact invasive species, and examine the general colonization (invasion) process of exotic species that have various “competitive abilities” against the native species. Using a two-species cellular automaton model, we demonstrate that: (1) a threshold level of competitive ability is required for the exotic species to successfully establish in a new landscape and (2) an exotic species with superior competitive ability does not necessarily become dominant in a landscape (alternatively, a species that has inferior competitive ability may successfully colonize a new system). Our findings have significant implications for the study of species invasions and also provide clues to how species assemble in ecological communities.  相似文献   

12.
Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well‐established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation‐oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social–ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision‐support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem‐based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. La Práctica Actual y los Prospectos Futuros para los Datos Sociales en la Planeación Costera y Oceánica  相似文献   

13.
Abstract:  Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient of urban land development. We sampled ant communities, measured vegetation characteristics, quantified human activities, and evaluated ant-community responses by grouping ants into service-providing units (SPUs), defined as a group of organisms and their populations that perform specific ecosystem services, to provide an understanding of urbanization impacts on biodiversity and their delivery of ecosystem services. Species richness and abundance peaked at intermediate levels of urban development, as did the richness of 3 types of ant SPUs (aerators, decomposers, and compilers). With increasing land development aerator and decomposer ants significantly declined in abundance, whereas compiler ants significantly increased in abundance. Competing models demonstrated that precipitation was frequently among the strongest influences on ant community structure; however, urban development and human activities also had a strong, negative influence on ants, appearing in most models with ΔAICc < 2 for species richness and abundance patterns of SPUs and generalists. Response diversity was observed within SPUs, which suggests that the corresponding ecosystem services were maintained until development reached 30–40%. Our data provide evidence that ecosystem functions, such as water infiltration and soil productivity, may be diminished at sites subject to greater levels of urbanization and that conserving ant communities and the ecosystem services they provide could be an important target in land-use planning and conservation efforts.  相似文献   

14.
Some invasion biologists contend their science has reached a consensus on 4 facts: cost estimates of the effects of nonindigenous species provided in papers by Pimentel et al. are credible; invasive species generally, not just predators, pose significant extinction threats; characteristic biological differences distinguish novel from native species, ecosystems, communities, and processes; and ontological dualism, which distinguishes between natural and anthropogenic processes and influences, plays a useful role in biological inquiry. I contend there is no convincing empirical evidence for any of these propositions. Leading invasion biologists cite their agreement about these propositions as evidence for them and impugn the motives of critics who believe consensus should be based on evidence not the other way around.  相似文献   

15.
Five Potential Consequences of Climate Change for Invasive Species   总被引:3,自引:0,他引:3  
Abstract:  Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.  相似文献   

16.
The human communities and ecosystems of island and coastal southeast Africa face significant and linked ecological threats. Socioecological conditions of concern to communities, governments, nongovernmental organizations, and researchers include declining agricultural productivity, deforestation, introductions of non-native flora and fauna, coastal erosion and sedimentation, damage to marine environments, illegal fishing, overfishing, waste pollution, salinization of freshwater supplies, and rising energy demands, among others. Human–environment challenges are connected to longer, often ignored, histories of social and ecological dynamics in the region. We argue that these challenges are more effectively understood and addressed within a longer-term historical ecology framework. We reviewed cases from Madagascar, coastal Kenya, and the Zanzibar Archipelago of fisheries, deforestation, and management of human waste to encourage increased engagement among historical ecologists, conservation scientists, and policy makers. These case studies demonstrate that by widening the types and time depths of data sets we used to investigate and address current socioecological challenges, our interpretations of their causes and strategies for their mitigation varied significantly.  相似文献   

17.
Fisher JA  Frank KT  Leggett WC 《Ecology》2010,91(9):2499-2505
A strictly species-centric view of human impacts on ecological communities may conceal important trait changes key to ecosystem functioning and stability. Analyses of body size and community composition data for 326 Northwest Atlantic fish species sampled across > 900000 km2 over three decades revealed a rapid and widespread reduction of body sizes driven by declines within species and changes in relative abundances. The changes were unrelated to species richness but of sufficient magnitude to eliminate biogeographic scale gradients of increasing body size with latitude commonly characterized as Bergmann's rule. These changes have persisted despite reduced potential for intraspecific competition and favorable bottom water temperatures, both of which should lead to increased growth rates. The aggregate body sizes in these Northwest Atlantic fish communities may now represent a mismatch between the environmental variability characteristic of the Northwest Atlantic and the historical body size, life history traits, and productivity of species across this region. We discuss how these changes may jeopardize the potential for recovery of these important temperate/subarctic ecosystems.  相似文献   

18.
The colonization dynamics in trophic-functional patterns of periphytic protist communities was studied in coastal waters of the Yellow Sea, northern China, from May to June, 2010. The periphytic protists represented different trophic-functional structures during colonization process. Only certain trophic-functional groups (e.g., photoautotrophs, algivores and non-selectives) occurred within the protist communities with low species number and abundance at the initial stage (1–3 days), while more trophic-functional groups (e.g., photoautotrophs, algivores, non-selectives and raptors) contributed to the communities with increased and peaked species number and abundance at the transitional (7–10 days) and equilibrium (14–28 days) stages, respectively. All heterotrophic groups were significantly fitted the MacArthur–Wilson model in colonization curves and represented higher species number and colonization rates at a depth of 1 m than at 3 m. These results may provide necessary understandings for ecological researches and monitoring programs using periphytic protists with different colonization ages in marine ecosystems.  相似文献   

19.
Species shifts and replacements are common in ecological studies. Observations thereof serve as the impetus for many ecological endeavors. Many of the species now known to dominate ecosystem functioning were largely ignored until studies of those underappreciated species elucidated their critical roles. Recognizing the potential importance of underappreciated species has implications for functional redundancies in ecosystems and should alter our approach to long-term monitoring. One example of an applied ecological system containing species shifts, underappreciated species, and potential changes in functional redundancies is the topic of fisheries. The demersal component of many fish communities usually consists of high-profile and commercially valuable species that are targets of fisheries, plus a diverse group of lesser known species that have minimal commercial value and focus. Yet ecologically these traditionally nontargeted species are often a major biomass sink in marine ecosystems and can also be critical in the functioning of bentho-demersal food webs. I examined the biomass trajectories of several species of skates, cottids, lophiids, anarhichadids, zooarcids, and similar species in the northeast U.S. Atlantic ecosystem to determine whether their relative abundance has changed across the past four decades. Distribution and stomach contents of these species were also evaluated over time to further elucidate the relative importance of these species. Landings of these underappreciated bentho-demersal fish were also examined in comparison to those species that historically have been commercially targeted. Of particular emphasis was the evaluation of evidence for sequential stock depletion and the ramifications for functional redundancy for this ecosystem. Results indicate that some of these fish species are now the dominant piscivores, benthivores, and scavengers in this ecosystem. These formerly under-studied species generally have either maintained a consistent population size or have increased in abundance (and expanded in distribution) over the past several decades. Nontraditionally targeted fish species are an often overlooked but important component of bentho-demersal fish communities. Implications for the energy flow and resilience specifically for future fisheries and generally for harvesting biological resources are significant, remaining critical issues for the world's ecosystems.  相似文献   

20.
Genetic variation within and among key species can have significant ecological consequences at the population, community, and ecosystem levels. In order to understand ecological properties of systems based on habitat-forming clonal plants, it is crucial to clarify which traits vary among plant genotypes and how they influence ecological processes, and to assess their relative contribution to ecosystem functioning in comparison to other factors. Here we used a mesocosm experiment to examine the relative influence of genotypic identity and extreme levels of nitrogen loading on traits that affect ecological processes (at the population, community, and ecosystem levels) for Zostera marina, a widespread marine angiosperm that forms monospecific meadows throughout coastal areas in the Northern Hemisphere. We found effects of both genotype and nitrogen addition on many plant characteristics (e.g., aboveground and belowground biomass), and these were generally strong and similar in magnitude, whereas interactive effects were rare. Genotypes also strongly differed in susceptibility to herbivorous isopods, with isopod preference among genotypes generally matching their performance in terms of growth and survival. Chemical rather than structural differences among genotypes drove these differences in seagrass palatability. Nitrogen addition uniformly decreased plant palatability but did not greatly alter the relative preferences of herbivores among genotypes, indicating that genotype effects are strong. Our results highlight that differences in key traits among genotypes of habitat-forming species can have important consequences for the communities and ecosystems that depend on them and that such effects are not overwhelmed by known environmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号