首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tropical soils are important sources and sinks of atmospheric methane (CH4) and major sources of oxides of nitrogen gases, nitrous oxide (NM2O) and NOx (NO+NO2). These gases are present in the atmosphere in trace amounts and are important to atmospheric chemistry and earth's radiative balance. Although nitric oxide (NO) does not directly contribute to the greenhouse effect by absorbing infrared radiation, it contributes to climate forcing through its role in photochemistry of hydroxyl radicals and ozone (O3) and plays a key role in air quality issues. Agricultural soils are a primary source of anthropogenic trace gas emissions, and the tropics and subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. The soil microbial processes responsible for the production and consumption of CH4 and production of N-oxides are the same in all parts of the globe, regardless of climate. Because of the ubiquitous nature of the basic enzymatic processes in the soil, the biological processes responsible for the production of NO, N2O and CH4, nitrification/denitrification and methanogenesis/methanotropy are discussed in general terms. Soil water content and nutrient availability are key controls for production, consumption and emission of these gases. Intensive studies of CH4 exchange in rice production systems made during the past decade reveal new insight. At the same time, there have been relatively few measurements of CH4, N2O or NOx fluxes in upland tropical crop production systems. There are even fewer studies in which simultaneous measurements of these gases are reported. Such measurements are necessary for determining total greenhouse gas emission budgets. While intensive agricultural systems are important global sources of N2O and CH4 recent studies are revealing that the impact of tropical land use change on trace gas emissions is not as great as first reports suggested. It is becoming apparent that although conversion of forests to grazing lands initially induces higher N-oxide emissions than observed from the primary forest, within a few years emissions of NO and N2O generally fall below those from the primary forest. On the other hand, CH4 oxidation is typically greatly reduced and grazing lands may even become net sources in situations where soil compaction from cattle traffic limits gas diffusion. Establishment of tree-based systems following slash-and-burn agriculture enhances N2O and NO emissions during and immediately following burning. These emissions soon decline to rates similar to those observed in secondary forest while CH4 consumption rates are slightly reduced. Conversion to intensive cropping systems, on the other hand, results in significant increases in N2O emissions, a loss of the CH4 sink, and a substantial increase in the global warming potential compared to the forest and tree-based systems. The increasing intensification of crop production in the tropics, in which N fertilization must increase for many crops to sustain production, will most certainly increase N-oxide emissions. The increase, however, may be on the same order as that expected in temperate crop production, thus smaller than some have predicted. In addition, increased attention to management of fertilizer and water may reduce trace gas emissions and simultaneously increase fertilizer use efficiency.  相似文献   

2.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

3.
During the last five decades (1961–2009), Spain has experienced a considerable expansion in the nutrient cycle of its agricultural sector and, in particular, a threefold increase in anthropogenic reactive nitrogen inputs, from 536 Gg N year?1 in 1961–1965 to 1673 Gg N year?1 in 2005–2009. Import of feed (soybean, cereals, and cakes) from America and Europe to supply a growing livestock population constitutes the largest share of this increase, along with intensification of synthetic fertilizer use. While in the early 1960s, Spain was nearly self-sufficient in terms of food and feed supply, the net import of agricultural products presently equals domestic crop production, when expressed in terms of nitrogen content (ca. 650 Gg N year?1). The most important driver of this shift appears to be the rapid change in domestic consumption patterns, which evolved from a typical Mediterranean diet to an animal-protein-rich diet similar to the North European and American diets. Besides livestock production mostly for national consumption, the Spanish agricultural system has specialized in vegetal products with low N content such as olive oil, wine, vegetables, and citrus fruit, which are for the most part exported. The nitrogen load exported outside the Spanish borders by rivers is very low (6.5 % of the total net N input). As a result of the high import and low export of reactive nitrogen, the Spanish mainland is suffering from considerable pollution by local emissions of reactive nitrogen forms to air and water.  相似文献   

4.
Carbon dioxide emissions due to fossil fuel consumption are well recognized as a major contributor to climate change. In the debate on dealing with this threat, expectations are high that agriculture based economies of the developing world can help alleviate this problem. But, the contribution of agricultural operations to these emissions is fairly small. It is the clearing of native ecosystems for agricultural use in the tropics that is the largest non-fossil fuel source of CO2 input to the atmosphere. Our calculation show that the use of fossil energy and the concomitant emission of CO2 in the agricultural operational sector - i.e. the use of farm machinery, irrigation, fertilization and chemical pesticides - amounts to merely 3.9% of the commercial energy use in that part of the world. Of this, 70% is associated with the production and use of chemical fertilizers. In the absence of fertilizer use, the developing world would have converted even more land for cultivation, most of which is completely unsuitable for cultivation. Current expectations are that reforestation in these countries can sequester large quantities of carbon in order to mitigate excessive emissions elsewhere. But, any program that aims to set aside land for the purpose of sequestering carbon must do so without threatening food security in the region. The sole option to liberate the necessary land for carbon sequestration would be the intensification of agricultural production on some of the better lands by increased fertilizer inputs. As our calculations show, the sequestration of carbon far outweighs the emissions that are associated with the production of the extra fertilizer needed. Increasing the fertilizer use in the developing world (without China) by 20%, we calculated an overall net benefit in the carbon budget of between 80 and 206 Mt yr?1 dependent on the carbon sequestration rate assumed for the regrowing forest. In those regions, where current fertilizer use is low, the relative benefits are the highest as responding yield increases are highest and thus more land can be set aside without harming food security. In Sub-Saharan Africa a 20% fertilizer increase, which amounts to 0.14 Mt of extra fertilizer, can tie up somewhere between 8 and 19 Mt of CO2 per year (average: 96 t CO2 per 1 t fertilizer). In the Near East and North Africa with a 20%-increased fertilizer use of 0.4 Mt yr-1 between 10 and 24 Mt of CO2 could be sequestered on the land set aside (40 t CO2 per 1 t fertilizer). In South Asia this is 22–61 Mt CO2 yr?1 with an annual additional input of 2.15 Mt fertilizer (19 t CO2 per 1 t fertilizer). In fact, carbon credits may be the only way for some of the farmers in these regions to afford the costly inputs. Additionally, in regions with already relatively high fertilizer inputs such as in South Asia, an efficient use of the extra fertilizer must be warranted. Nevertheless, the net CO2 benefit through implementation of this measure in the developing world is insignificant compared to the worldwide CO2 output by human activity. Thus, reforestation is only one mitigating measure and not the solution to unconstrained fossil fuel CO2 emissions. Carbon emissions should, therefore, first of all be reduced by the avoidance of deforestation in the developing world and moreover by higher energy efficiency and the use of alternative energy sources.  相似文献   

5.
Tripathi  Rahul  Dhal  B.  Shahid  Md  Barik  S. K.  Nayak  A. D.  Mondal  B.  Mohapatra  S. D.  Chatterjee  D.  Lal  B.  Gautam  Priyanka  Jambhulkar  N. N.  Fitton  Nuala  Smith  Pete  Dawson  T. P.  Shukla  A. K.  Nayak  A. K. 《Environment, Development and Sustainability》2021,23(8):11563-11582

A study was conducted to examine the interrelationships among socioeconomic factors, household consumption patterns, calorie intake and greenhouse gas emissions factors in rural eastern India based on household survey data. Findings indicated that higher monthly per capita incomes (12.1–80.1$) were associated with greater average calorie intakes (2021–2525 kcal d?1). As estimated by the FEEDME model, in total 17.2% of the population was calorie malnourished with a regional disparity of 29.4–18.2% malnourishment. Greenhouse gas (GHG) emissions were calculated only on the basis of crop and livestock production and consumption. Rice accounted for the highest share of total GHG emissions, on average 82.6% on a production basis, which varied from 58.1% to 94.9% in regional basis. Rice contributed the greatest share (~?65% and 66.2%) in terms of both calories and GHG emissions (CO2 eq y?1), respectively, on a consumption basis. We conclude that extensive rice farming and increasing animal product consumption are dominant factors in the higher carbon footprint in this region and are likely to further increase with increase in per capita income. This study provides useful information to help for better crop planning and for fine-tuning food access policy, to reduce carbon footprint and calorie malnutrition.

  相似文献   

6.
NEWS     
Abstract

Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tce) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tce that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors.  相似文献   

7.
Globally, more than 30 % of all food that is produced is ultimately lost and/or wasted through inefficiencies in the food supply chain. In the developed world this wastage is centred on the last stage in the supply chain; the end-consumer throwing away food that is purchased but not eaten. In contrast, in the developing world the bulk of lost food occurs in the early stages of the supply chain (production, harvesting and distribution). Excess food consumption is a similarly inefficient use of global agricultural production; with almost 1 billion people now classed as obese, 842 million people are suffering from chronic hunger. Given the magnitude of greenhouse gas emissions from the agricultural sector, strategies that reduce food loss and wastage, or address excess caloric consumption, have great potential as effective tools in global climate change mitigation. Here, we examine the challenges of robust quantification of food wastage and consumption inefficiencies, and their associated greenhouse gas emissions, along the supply chain. We find that the quality and quantity of data are highly variable within and between geographical regions, with the greatest range tending to be associated with developing nations. Estimation of production-phase GHG emissions for food wastage and excess consumption is found to be similarly challenging on a global scale, with use of IPCC default (Tier 1) emission factors for food production being required in many regions. Where robust food waste data and production-phase emission factors do exist—such as for the UK—we find that avoiding consumer-phase food waste can deliver significant up-stream reductions in GHG emissions from the agricultural sector. Eliminating consumer milk waste in the UK alone could mitigate up to 200 Gg CO2e year?1; scaled up globally, we estimate mitigation potential of over 25,000 Gg CO2e year?1.  相似文献   

8.
Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.  相似文献   

9.
The global animal food chain has a large contribution to the global anthropogenic greenhouse gas (GHG) emissions, but its share and sources vary highly across the world. However, the assessment of GHG emissions from livestock production is subject to various uncertainties, which have not yet been well quantified at large spatial scale. We assessed the uncertainties in the relations between animal production (milk, meat, egg) and the CO2, CH4, and N2O emissions in Africa, Latin America and the European Union, using the MITERRA-Global model. The uncertainties in model inputs were derived from time series of statistical data, literature review or expert knowledge. These model inputs and parameters were further divided into nine groups based on type of data and affected greenhouse gas. The final model output uncertainty and the uncertainty contribution of each group of model inputs to the uncertainty were quantified using a Monte Carlo approach, taking into account their spatial and cross-correlation. GHG emissions and their uncertainties were determined per livestock sector, per product and per emission source category. Results show large variation in the GHG emissions and their uncertainties for different continents, livestock sectors products or source categories. The uncertainty of total GHG emissions from livestock sectors is higher in Africa and Latin America than in the European Union. The uncertainty of CH4 emission is lower than that for N2O and CO2. Livestock parameters, CH4 emission factors and N emission factors contribute most to the uncertainty in the total model output. The reliability of GHG emissions from livestock sectors is relatively high (low uncertainty) at continental level, but could be lower at country level.  相似文献   

10.
The study reported here focuses on the environmental pressure exerted by large-scale eucalyptus-based kraft pulp industry in Thailand. The objective of this study was to identify the most important sources of greenhouse gases, acidifying and eutrophying compounds and tropospheric ozone precursors, human toxicity compounds and solid waste associated with the kraft pulp industry. To this end, we performed an environmental systems analysis of the kraft pulp industry system in which we distinguished between two subsystems: the eucalyptus forestry subsystem and the kraft pulp production subsystem. The results indicate that the environmental pressure is caused by the kraft pulp production subsystem rather than by the eucalyptus forestry one. The chemical recovery unit was found to be the most important source of carbon dioxide (CO2) and sulfur dioxide (SO2) and responsible for more than one-half of the emissions of greenhouse gases and acidifying compounds from eucalyptus-based kraft pulp production in Thailand. Biomass combustion in the energy gene ration unit is an important source of nitrogen oxide (NO x ) and carbon monoxide (CO) which in turn are responsible for over 50% of the emissions of tropospheric ozone precursors. About 73% of the eutrophication is caused by biological aerobic wastewater treatment emitting phosphorus (P). With respect to the eucalyptus forestry, only fertilizer use in eucalyptus plantations is a relevant source of pollution through the emission of nitrous oxide (N2O) and phosphate (PO 4 3− ).  相似文献   

11.
Greenhouse gases (GHG) emissions from agricultural farming practice contribute significantly to European GHG inventories. For example, CO2 is emitted when grassland is converted to cropland or when peatlands are drained and cultivated. N2O emissions result from fertilization. Enabling farmers to reduce their GHG emissions requires sufficient information about its pressure–impact relations as well as incentives, such as regulations and funding, that support climate-friendly agricultural management. This paper discusses potentials to improve the supply of information on: farm-specific climate services or impacts, present policy incentives in Germany and England that support climate-friendly farm management and related adaptation requirements. Tools which have been developed for a farm environmental management software (to be added after review because of potential identification) are presented. These tools assess CO2 emissions from grassland conversion to cropland and peatland cultivation, as well as N2O emissions from nitrogen fertilization. As input data, the CO2 tool requires a classification of soil types according to soil organic carbon storage. The input data based on soil profile samples was compared with reference data from the literature. The N2O tool relies on farm data concerning fertilization. These tools were tested on three farms in order to determine their viability with respect to the availability of required data and the differentiation of results, which determines how well site-specific conservation measures can be identified. Assessing CO2 retention function of grassland conservation to cropland on the test farms leads to spatially differentiated results (~100 to ~900 potentially mitigated t CO2 ha?1). Assessed N2O emissions varied from 0.41 to 1.1 t CO2eq. ha?1 a?1. The proposed methods support policies that promote a more differentiated funding of climate conservation measures. Conservation measures and areas can be selected so that they will have the greatest mitigation effects. However, even though present policy instruments in Germany and England, such as Cross Compliance and agri-environmental measures, have the potential to reduce agricultural GHG, they do not appear to guide measures effectively or site-specifically. In order to close this gap, agri-environmental measures with the potential to support climate protection should be spatially optimized. Additionally, the wetland restoration measures which are most effective in reducing GHG emissions should be included in funding schemes.  相似文献   

12.
Oxidation of hydrocarbon in asphalt binder leads to the production of carbon dioxide (CO2) during the production of hot mix asphalt. The objective of this laboratory study was to investigate the effects of the asphalt additive Sasobit®, asphalt content and mixing/placement temperature on CO2 emissions from binder with laboratory measurements. The isolated effects of Sasobit on asphalt absorption into the aggregate were also looked at. Temperature was found to be the only statistically significant factor on emissions. This would suggest that warm mix asphalt technology, which employs the use of Sasobit in asphalt mixtures, is a very effective way of lowering the industry's CO2 emission impact, both directly and by the use of less energy for heating. This work predicts that greater than 30% reduction of CO2 emissions is possible with typically used levels of Sasobit.  相似文献   

13.
There exists a high global concern in different nations on environmental sustainability especially at the focal stage of increased economic growth and development process due to high level of environmental degradation and pollution. The major aim of this study was to empirically examine how to minimise carbon emissions (CO2) in Malaysia which are mainly caused by energy production, fossil fuel consumption, population density and economic growth. The study adopted the method of autoregressive distributed lag bound testing approach to analyse the data for the period 1971–2011. The study found that economic growth in Malaysia has a direct relationship with CO2 emissions in both the short run and the long run. Similarly, there is a positive relationship between fossil fuel consumption and CO2 emissions over the same period. Population density was found to have positive impacts on CO2 emissions. Contrarily, the relationship between the activities of energy production and pollution is negative in the long run. The study recommends that a targeted GDP growth rate should be set with the consideration to avoid more environmental pollution. In addition, the positive impact of fossil fuel consumption on the environmental pollution implies that there is a need to make and implement policies that will encourage the use of public transportation system more than private transportations. That is, the unnecessary use of private vehicles should be discouraged in order to reduce the extent of fossil fuel consumption.  相似文献   

14.
Many agro(eco)systems in Africa have been degraded as a result of past disturbances, including deforestation, overgrazing, and over exploitation. These systems can be managed to reduce carbon emissions and increase carbon sinks in vegetation and soil. The scope for soil organic carbon gains from improved management and restoration within degraded and non-degraded croplands and grasslands in Africa is estimated at 20–43 Tg C year?1, assuming that 'best' management practices can be introduced on 20% of croplands and 10% of grasslands. Under the assumption that new steady state levels will be reached after 25 years of sustained management, this would correspond with a mitigation potential of 4–9% of annual CO2 emissions in Africa. The mechanisms that are being put in place to implement the Kyoto Protocol - through C emission trading - and prevailing agricultural policies will largely determine whether farmers can engage in activities that enhance C sequestration in Africa. Mitigation of climate change by increased carbon sequestration in the soil appears particularly useful when addressed in combination with other pressing regional challenges that affect the livelihood of the people, such as combating land degradation and ensuring food security, while at the same time curtailing global anthropogenic emissions.  相似文献   

15.
This study was conducted to assess the impact of cereals (wheat and barley) production on environment under rainfed and irrigated farming systems in northeast of Iran. Life cycle assessment (LCA) was used as a methodology to assess all environmental impacts of cereal grain production through accounting and appraising the resource consumption and emissions. The functional unit considered in this study was one ton grain yield production under different rates of nitrogen application. All associated impacts of different range of N fertilizer application were evaluated on the basis of the functional unit. In this study, three major impact categories considered were climate change, acidification, and eutrophication. In order to prepare final evaluation of all impacts on environment, the EcoX was determined. Results represented that, under low consumption of N fertilizer, the environmental impacts of both rainfed farming systems of wheat and barley was less than irrigated farming systems. Considering grain yield as response factor to different fertilizer application level, irrigated farming systems of wheat and barley with the range of 160–180 and?>220 (Kg?N?ha?1) showed the maximum impact on environment. It seems LCA is an appropriate method to quantify the impact of utilized agricultural inputs and different managements on environment.  相似文献   

16.
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.  相似文献   

17.
The present study investigates the energy, environment and growth nexus for a panel of South Asian countries including Bangladesh, India, Pakistan, Sri Lanka and Nepal. The simultaneous analysis of real GDP, energy consumption and CO2 emissions is conducted for the period 1980–2010. Levin panel unit root test and Im test panel unit root both indicate that all the variables are I (1). In addition, Kao’s panel Cointegration test specifies a stable long-term relationship between all these variables. Empirical findings show that a 1 % increase in energy consumption increases output by 0.81 % in long run whereas for the same increase in CO2 emission output falls by 0.17 % in long run. Panel Granger causality tests report short-run causality running from energy consumption to CO2 emissions and from CO2 emissions to GDP.  相似文献   

18.
Closed landfills need after-closure rehabilitation. The chosen option should ensure greenhouse gases release, from the landfill, is not promoted once settled. The objective of this study was to estimate and confront, during different seasons, CH4, CO2 and N2O emissions under three vegetation covers in a closed landfill in Buenos Aires, Argentina. CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide) emissions from landfill’s technosol under spontaneous vegetation (control), Pennisetum purpureum and Miscanthus giganteus (biomass crops), were quantified with non-steady-state non-flow-through chambers, in July 2014 and from February to July 2015. A linear regression analysis was performed to relate the variables “flux of a gas” and “concentration of that gas” from the 3 treatments and 6 dates, separating the 5 sampling times. A high correlation between concentrations and fluxes of CO2 and N2O was found, but no correlation was established for CH4. Mean emissions (2014–2015) varied from: ?2.3 to 639.41 mgCH4 m?2 day?1, 3884 to 46,365 mgCO2 m?2 day?1 and 0.40 to 14.59 mgN2O m?2 day?1. Vegetation covers had no significant effect on CH4 and N2O concentration in time, but they had on CO2 concentration. Season of the year had a significant effect on concentration of the three gases. This is the first study on CH4, CO2 and N2O emissions from a landfill closed 27 years ago covered with biomass crops.  相似文献   

19.
Dairy feeding systems in many semi-arid countries are based on imported concentrates and forages. This has economic and ecological implications given the increase in global feed prices and greenhouse gas (GHG) emissions from land use change. This paper aims to explore alternative dairy feeding systems under semi-arid conditions, using Jordan as an example. The feedings systems under investigation vary in their share of food industry by-products (replacing concentrates in the diet) and are compared against the current concentrate-based feeding systems. The systems are evaluated against three criteria: their nutritional value, their impact on the cost of milk production, and their GHG mitigation potential. Feed samples from eleven food industry by-products and ten conventional feeds were collected from food factories and from three typical dairy farms, representing the typical large-, medium- and small-scale farm types, respectively. Feed samples were analysed for their chemical composition and metabolisable energy contents. In addition, economic and production farm data were collected and entered into a model for GHGs calculation and economic evaluation. The results suggest that inclusion of locally available food industry by-products in the rations of milk cows in semi-arid production systems can be instrumental in reducing production costs and mitigating GHG emissions. Cost of milk production in the model farms can be lowered by up to 14 %; mitigation of CO2 eq. emission ranged between 70 and 290 g CO2 eq./kg milk. The degree to which these benefits can be reaped is positively related to the level of inclusion of by-product feeds in lactating cows’ diets.  相似文献   

20.
湖南省碳源与碳汇变化的时序分析   总被引:1,自引:0,他引:1  
在全球气候变暖的背景下,减少温室气体排放、发展低碳经济成为各地区在发展中的普遍共识。以湖南省为研究区域,以1995~2008年为研究时序,从能源消费、主要工业产品生产工艺过程、土地利用变化与牲畜管理、固体废弃物处理与废水处理和排放4个方面综合分析了碳源与碳汇的变化情况。研究表明:1995~2008年,湖南省温室气体排放总量约在220亿t(2000年)至399亿t(2008年)CO2当量之间,14 a间增长了6118%,年均增长374%;碳汇总量约在1754亿t(1995年)至2537亿t(2007年)CO2当量之间,14 a间增长了3607%,年均增长约240%;能源消费与农业部门是湖南省温室气体的主要来源,林地是湖南省碳汇的主要来源;综合碳源与碳汇变化的均衡结果,1995~2008年湖南省呈碳汇盈余状态,净碳汇在2001~2007年持续增加,14 a间增长了31.94%,年均增长2.15%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号