首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The structuring and organizing effects of apex predators on ecosystems are becoming increasingly well documented. The enhancement of kelp forests via sea otter predation on herbivorous sea urchins is among the earliest and best known examples. This study provides evidence for direct and indirect trophic interactions among sea otters, predatory sea stars, and filter-feeding mussels (Mytilus trossulus) and barnacles (Semibalanus cariosis). In western Massacre Bay at Attu Island (173°E, 53°N), subtidal transects showed sea star body size and biomass density declined markedly between 1983 and 1994 as sea otters reinhabited this area. Mussels and barnacles translocated from the rocky intertidal zone to shallow subtidal habitats to assess loss rates from sea star predation showed lower mortality rates after the arrival of sea otters. Prey mortality rates in subtidal caged controls were consistently low and similar to those of intertidal controls in both years. These findings elucidate a trophic pathway by which sea otters can influence ecosystems separate from the well-known sea otter/sea urchin/macroalgae cascade.  相似文献   

2.
We sought to take a first step toward better integration of social concerns into empirical ecosystem service (ES) work. We did this by adapting cognitive anthropological techniques to study the Clayoquot Sound social‐ecological system on the Pacific coast of Canada's Vancouver Island. We used freelisting and ranking exercises to elicit how locals perceive ESs and to determine locals’ preferred food species. We analyzed these data with the freelist‐analysis software package ANTHROPAC. We considered the results in light of an ongoing trophic cascade caused by the government reintroduction of sea otters (Enhydra lutris) and their spread along the island's Pacific coast. We interviewed 67 local residents (n = 29 females, n = 38 males; n = 26 self‐identified First Nation individuals, and n = 41 non‐First Nation individuals) and 4 government managers responsible for conservation policy in the region. We found that the mental categories participants—including trained ecologists—used to think about ESs, did not match the standard academic ES typology. With reference to the latest ecological model projections for the region, we found that First Nations individuals and women were most likely to perceive the most immediate ES losses from the trophic cascade, with the most certainty. The inverse was found for men and non‐First Nations individuals, generally. This suggests that 2 historically disadvantaged groups (i.e., First Nations and women) are poised to experience the immediate impacts of the government‐initiated trophic cascade as yet another social injustice in a long line of perceived inequities. Left unaddressed, this could complicate efforts at multistakeholder ecosystem management in the region.  相似文献   

3.
Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species‐centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator–prey interactions. Using simulation‐based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional‐response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short‐term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. Definición de Metas de Recuperación Realistas para Dos Especies en Peligro Interactuantes, Enhydra lutris y Haliotis kamtschatkana  相似文献   

4.
Abstract: Recovery criteria for depleted species or populations normally are based on demographic measures, the goal being to maintain enough individuals over a sufficiently large area to assure a socially tolerable risk of future extinction. Such demographically based recovery criteria may be insufficient to restore the functional roles of strongly interacting species. We explored the idea of developing a recovery criterion for sea otters (Enhydra lutris) in the Aleutian archipelago on the basis of their keystone role in kelp forest ecosystems. We surveyed sea otters and rocky reef habitats at 34 island‐time combinations. The system nearly always existed in either a kelp‐dominated or deforested phase state, which was predictable from sea otter density. We used a resampling analysis of these data to show that the phase state at any particular island can be determined at 95% probability of correct classification with information from as few as six sites. When sea otter population status (and thus the phase state of the kelp forest) was allowed to vary randomly among islands, just 15 islands had to be sampled to estimate the true proportion that were kelp dominated (within 10%) with 90% confidence. We conclude that kelp forest phase state is a more appropriate, sensitive, and cost‐effective measure of sea otter recovery than the more traditional demographically based metrics, and we suggest that similar approaches have broad potential utility in establishing recovery criteria for depleted populations of other functionally important species.  相似文献   

5.
Anthony RG  Estes JA  Ricca MA  Miles AK  Forsman ED 《Ecology》2008,89(10):2725-2735
Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator to another.  相似文献   

6.
Indirect effects are powerful influences in ecosystems that may maintain species diversity and alter apparent relationships between species in surprising ways. Here, we applied network environ analysis to 50 empirically-based trophic ecosystem models to test the hypothesis that indirect flows dominate direct flows in ecosystem networks. Further, we used Monte Carlo based perturbations to investigate the robustness of these results to potential error in the underlying data. To explain our findings, we further investigated the importance of the microbial food web in recycling energy-matter using components of the Finn Cycling Index and analysis of environ centrality. We found that indirect flows dominate direct flows in 37/50 (74.0%) models. This increases to 31/35 (88.5%) models when we consider only models that have cycling structure and a representation of the microbial food web. The uncertainty analysis reveals that there is less error in the I/D values than the ±5% error introduced into the models, suggesting the results are robust to uncertainty. Our results show that the microbial food web mediates a substantial percentage of cycling in some systems (median = 30.2%), but its role is highly variable in these models, in agreement with the literature. Our results, combined with previous work, strongly suggest that indirect effects are dominant components of activity in ecosystems.  相似文献   

7.
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.  相似文献   

8.
Ten ways remote sensing can contribute to conservation   总被引:1,自引:0,他引:1       下载免费PDF全文
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain‐referral survey. We then used a workshop‐based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real‐time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing‐derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?  相似文献   

9.
For a Lotka-Volterra model to represent a viable ecosystem it's nontrivial equilibrium must be feasible. If m is the number of species, it is shown that in a set of randomly assembled Lotka-Volterra models, the fraction of models with a feasible equilibrium is some function of m which behaves like 2?m. Moreover a subset of Lotka-Volterra models, each of which has a feasible equilibrium, has the same stability property as a set of linear models which is assembled randomly in the same manner. This contradicts a recent claim that a Lotka-Volterra model with a feasible equilibrium tends to be stable. Thus for two reasons the probability that a Lotka-Volterra model represents a viable and stable ecosystem decreases rapidly with the number of species. This supports the theme developed by May that stability in model ecosystems decreases with diversity.  相似文献   

10.
Experiences with the reintroduction of the takhi, or Przewalski horse ( Equus ferus przewalskii , in Mongolia can serve as valuable lessons for reintroduction of ungulates in general. We discuss the present taxonomic, historical, and biological evidence and conclude that the takhi should be viewed as a typical steppe herbivore. Its last refuge, the Dzungarian Gobi, should therefore be seen as a marginal habitat because it consists mainly of desert and semidesert. Since 1992 two reintroduction projects have been in the acclimatization phase in Mongolia. Despite promising developments, problems with cooperation, management, habitat choice, insufficient knowledge of the ethology of the species, and current land use within the different project areas could jeopardize the successful reintroduction of takhi. We review the conditions required for a potentially successful ungulate reintroduction. The planning of a reintroduction within the framework of safeguarding an entire ecosystem with an integrated management plan appears essential. Each potential reintroduction site should be assessed thoroughly for its suitability, including size, habitat types, current land use, socioeconomics, legislation, and potential problems. Each site should be provided with one or more acclimatization facilities to harbor genetically and physically healthy, socially adapted animals in biologically sound groups. An organization structure should be established for each reintroduction site. Its objective should be to develop an effective management plan and to carefully monitor the population and its surrounding ecosystem. Special attention should be given to local socioeconomic situations, community participation, and training of staff for management, research, and ranger and warden activities.  相似文献   

11.
Species reintroduction efforts can improve the recovery of imperiled species, but successful implementation of this conservation strategy requires a thorough understanding of the abiotic and biotic factors influencing species viability. Species interactions are especially understudied, in particular by omitting the effect of imperfect detection on negative, neutral, or positive associations within a community. Using repeat surveys from 5 southern Ontario, Canada, Great Lakes tributaries, we quantified species co-occurrence patterns with the eastern sand darter (ESD) (Ammocrypta pellucida), listed as federally threatened, and characterized how imperfect detection during sampling can influence inference regarding these relationships. We used a probabilistic framework that included 3 approaches of increasing complexity: probabilistic co-occurrence analysis ignoring imperfect detection; single-species occupancy models with subsequent co-occurrence analysis; and 2-species occupancy models. We then used our occupancy models to predict suitable sites for potential future reintroduction efforts while considering the influence of negative species interactions. Based on the observed data, ESD showed several positive associations with co-occurring species; however, species associations differed when imperfect detection was considered. Specifically, a negative association between ESD and rosyface shiner (Notropis rubellus) was observed only after accounting for imperfect detection in the Grand River. Alternatively, positive associations in the Grand River between ESD and northern hogsucker (Hypentelium nigricans) and silver shiner (Notropis photogenis) were observed regardless of whether imperfect detection was accounted for. Our models predicted several potential reintroduction sites for ESD in formerly occupied watersheds with high levels of certainty. Overall, our results demonstrate the importance of investigating imperfect detection and species co-occurrence when planning reintroduction efforts.  相似文献   

12.
The effects of fisheries on marine ecosystems, and their capacity to drive shifts in ecosystem states, have been widely documented. Less well appreciated is that some commercially valuable species respond positively to fishing‐induced ecosystem change and can become important fisheries resources in modified ecosystems. Thus, the ecological effects of one fishery can unintentionally increase the abundance and productivity of other fished species (i.e., cultivate). We reviewed examples of this effect in the peer‐reviewed literature. We found 2 underlying ecosystem drivers of the effect: trophic release of prey species when predators are overfished and habitat change. Key ecological, social, and economic conditions required for one fishery to unintentionally cultivate another include strong top–down control of prey by predators, the value of the new fishery, and the capacity of fishers to adapt to a new fishery. These unintended cultivation effects imply strong trade‐offs between short‐term fishery success and conservation efforts to restore ecosystems toward baseline conditions because goals for fisheries and conservation may be incompatible. Conflicts are likely to be exacerbated if fisheries baselines shift relative to conservation baselines and there is investment in the new fishery. However, in the long‐term, restoration toward ecosystem baselines may often benefit both fishery and conservation goals. Unintended cultivation can be identified and predicted using a combination of time‐series data, dietary studies, models of food webs, and socioeconomic data. Identifying unintended cultivation is necessary for management to set compatible goals for fisheries and conservation. Cultivo Accidental, Líneas de Base Cambiantes y el Conflicto entre los Objetivos para las Pesquerías y la Conservación  相似文献   

13.
保护生态系统服务功能越来越多地被作为风险评估的目标,但是目前生态风险评估的终点和评估生态系统服务功能受到的潜在影响之间有很大的差距。作者提出了一个框架,将常用的生态毒理学终点与对种群和群落的影响以及生态系统的服务功能联系起来。这个框架建立在机制效应模型的长足进步上,这些模型旨在跨越多种生物组织,并解释各种生物相互作用和反馈。为了说明这一点,作者引入了2个研究案例,它们采用了已完善和已验证的机制效应模型:鱼种群的inSTREAM个体模型和AQUATOX生态系统模型。他们还展示了动态能量平衡理论可以为解释组织级毒性提供一种通用货币。他们认为,一个基于机制模型的框架,可以预测化学品暴露对生态系统服务的影响,再结合经济估值,可以为环境管理提供一种有用的方法。作者强调了使用这个框架的潜在好处以及未来工作中需要解决的挑战。
精选自Forbes, V. E., Salice, C. J., Birnir, B., Bruins, R. J.F., Calow, P., Ducrot, V., Galic, N., Garber, K., Harvey, B. C., Jager, H., Kanarek, A., Pastorok, R., Railsback, S. F., Rebarber, R. and Thorbek, P. (2017), A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals. Environmental Toxicology and Chemistry, 36: 845–859. doi: 10.1002/etc.3720
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3720/full
  相似文献   

14.
Ecosystem models represent potentially powerful tools for coral reef ecosystem managers. They can provide insight into ecosystem dynamics not achievable through alternative means allowing coral reef managers to assess the potential outcome of any given management decision. One of the main limitations in the applicability of ecosystem models is that they often require detailed empirical data and this can restrict their applicability to ecosystems that are either currently well studied or have the resources available to collect the required data. This study describes the development of a coral reef ecosystem model that can be calibrated to an ecosystem with limited empirical data. Based on the assumption that coral reef ecological structure is generic across all tropical coral reefs and that the magnitude of the interactions between ecological components is reef specific, the dynamics of the ecosystem can be replicated based on limited empirical data. The model successfully replicated the dynamics of three individual reef systems including an inshore and oceanic reef within the Great Barrier Reef and a Caribbean reef system. It highlighted the importance of understanding the specific dynamics of a given reef and that a positive management intervention in one system may result in a negative outcome for another. The model was also used to assess the importance of various interactions within coral reef ecosystems. It identified the interactions between hard corals and other non-algal benthic components as being an important (but currently understudied) facet of coral reef ecology. The development of this modelling approach provides access to ecosystem modelling tools for coral reef managers previously excluded due to a lack of resources or technical expertise.  相似文献   

15.
Habitat loss, trophic collapse, and the decline of ecosystem services   总被引:8,自引:0,他引:8  
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.  相似文献   

16.
As invasion rates of exotic species increase, an ecosystem level understanding of their impacts is imperative for predicting future spread and consequences. We have previously shown that network analyses are powerful tools for understanding the effects of exotic species perturbation on ecosystems. We now use the network analysis approach to compare how the same perturbation affects another ecosystem of similar trophic status. We compared food web characteristics of the Bay of Quinte, Lake Ontario (Canada), to previous research on Oneida Lake, New York (USA) before and after zebra mussel (Dreissena polymorpha) invasion. We used ecological network analysis (ENA) to rigorously quantify ecosystem function through an analysis of direct and indirect food web transfers. We used a social network analysis method, cohesion analysis (CA), to assess ecosystem structure by organizing food web members into subgroups of strongly interacting predators and prey. Together, ENA and CA allowed us to understand how food web structure and function respond simultaneously to perturbation. In general, zebra mussel effects on the Bay of Quinte, when compared to Oneida Lake, were similar in direction, but greater in magnitude. Both systems underwent functional changes involving focused flow through a small number of taxa and increased use of benthic sources of production; additionally, both systems structurally changed with subgroup membership changing considerably (33% in Oneida Lake) or being disrupted entirely (in the Bay of Quinte). However, the response of total ecosystem activity (as measured by carbon flow) differed between both systems, with increasing activity in the Bay of Quinte, and decreasing activity in Oneida Lake. Thus, these analyses revealed parallel effects of zebra mussel invasion in ecosystems of similar trophic status, yet they also suggested that important differences may exist. As exotic species continue to disrupt the structure and function of our native ecosystems, food web network analyses will be useful for understanding their far-reaching effects.  相似文献   

17.
Abstract: Globally, ecosystems are under increasing anthropogenic pressure; thus, many are at risk of elimination. This situation has led the International Union for Conservation of Nature (IUCN) to propose a quantitative approach to ecosystem‐risk assessment. However, there is a need for their proposed criteria to be evaluated through practical examples spanning a diverse range of ecosystems and scales. We applied the IUCN's ecosystem red‐list criteria, which are based on changes in extent of ecosystems and reductions in ecosystem processes, to New Zealand's 72 naturally uncommon ecosystems. We aimed to test the applicability of the proposed criteria to ecosystems that are naturally uncommon (i.e., those that would naturally occur over a small area in the absence of human activity) and to provide information on the probability of ecosystem elimination so that conservation priorities might be set. We also tested the hypothesis that naturally uncommon ecosystems classified as threatened on the basis of IUCN Red List criteria contain more threatened plant species than those classified as nonthreatened. We identified 18 critically endangered, 17 endangered, and 10 vulnerable ecosystems. We estimated that naturally uncommon ecosystems contained 145 (85%) of mainland New Zealand's taxonomically distinct nationally critical, nationally endangered, and nationally vulnerable plant species, 66 (46%) of which were endemic to naturally uncommon ecosystems. We estimated there was a greater number of threatened plant species (per unit area) in critically endangered ecosystems than in ecosystems classified as nonthreatened. With their high levels of endemism and rapid and relatively well‐documented history of anthropogenic change, New Zealand's naturally uncommon ecosystems provide an excellent case‐study for the ongoing development of international criteria for threatened ecosystems. We suggest that interactions and synergies among decline in area, decline in function, and the scale of application of the criteria be used to improve the IUCN criteria for threatened ecosystems.  相似文献   

18.
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone‐predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka–Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem‐wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication.  相似文献   

19.
Outbreaks of disease in herbivorous sea urchins have led to ecosystem phase shifts from urchin barrens to kelp beds (forests) on temperate rocky reefs, and from coral to macroalgal-dominated reefs in the tropics. We analyzed temporal patterns in epizootics that cause mass mortality of sea urchins, and consequent phase shifts, based on published records over a 42-year period (1970–2012). We found no evidence for a general increase in disease outbreaks among seven species of ecologically important and intensively studied sea urchins. Periodic waves of recurrent amoebic disease of Strongylocentrotus droebachiensis in Nova Scotia coincide with periods when the system was in a barrens state and appear to have increased in frequency. In contrast, following a major epizootic that decimated Diadema antillarum throughout the Caribbean in 1983, subsequent outbreaks of disease were highly localized and none have been reported since 1991. Epizootics of Strongylocentrotus in the NW Atlantic and NE Pacific, and Paracentrotus and Diadema in the eastern Atlantic, have been linked to climate change and overfishing of sea urchin predators. The spatial extent of recurrent disease outbreaks in these species, and the frequency of phase shifts associated with these epizootics, has decreased over time due to the expansion of the macroalgal state and its stabilization through positive feedback mechanisms. Longitudinal studies to monitor disease outbreaks in sea urchin populations and improved techniques to identify causative agents are needed to assess changes in the frequency and extent of epizootics, which can profoundly affect the structure and functioning of coastal marine ecosystems.  相似文献   

20.
We used a Leslie matrix population model to investigate the impact of a range of harvest rates proposed for Alaskan sea otters (Enhydra lutris). The simulation included an analysis of several population mechanisms that might be important in the natural regulation of sea otter populations or in their reactions to harvesting. Significant differences in equilibrium population levels were found between compensatory mechanisms when fixed harvest rates were applied for 25-year periods. Adult harvests set at 2 and 4% of the total population showed that new stable population levels were rapidly attained. Harvest rates of 8 and 10%, however, resulted in marked population declines in simulated harvests. This analysis demonstrates that limited harvesting can be sustained by the population and that otter population compensation responses will be a critical determinant of sustainable harvest rates of sea otter populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号