首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological modelling》2007,200(1-2):193-206
An object-oriented model of environment–mussel aquaculture interactions and mussel carrying-capacity within Lagune de la Grande-Entrée (GEL), Iles-de-la-Madeleine, Québec, was constructed to assist in development of sustainable mussel culture in this region. A multiple box ecosystem model for GEL tied to the output of a hydrodynamic model was constructed using Simile software, which has inherent ability to represent spatial elements and specify water exchange between modelled regions. Mussel growth and other field data were used for model validation. Plackett–Burman sensitivity analysis demonstrated that a variety of bioenergetic parameters of zooplankton and phytoplankton submodels were important in model outcomes. Model results demonstrated that mussel aquaculture can be further developed throughout the lagoon. At present culture densities, phytoplankton depletion is minimal, and there is little food limitation of mussel growth. Results indicated that increased stocking density of mussels in the existing farm will lead to decreased mass per individual mussel. Depending on the location of new farm emplacement within the lagoon, implementation of new aquaculture sites either reduced mussel growth in the existing farm due to depletion of phytoplankton, or exhibited minimum negative impact on the existing farm. With development throughout GEL, an excess of phytoplankton was observed during the year in all modelled regions, even at stocking densities as high as 20 mussels m−3. Although mussels cultured at this density do not substantially impact the ecosystem, their growth is controlled by the flux of phytoplankton food and abundance of zooplankton competitors. This model provides an effective tool to examine expansion of shellfish farming to new areas, balancing culture location and density.  相似文献   

2.
A generic ecosystem model has been developed for estimating the potential production of shellfish culture and the effect of that cultivation on the pelagic ecosystem in sheltered coastal waters. The model describes the dynamics of a simple food web, nutrient cycling and growth of shellfish. The design of the model is closely tied to the temporal and spatial scales that are important in determining the sustainable production level for a particular embayment. The pelagic ecosystem, mussel energetics, population dynamics and hydrodynamics are coupled to allow fully dynamic predictions of the effect of the shellfish density. When applied to Beatrix Bay, an intensive culture embayment in the Pelorus Sound of New Zealand, the model successfully captured main features of the observed system behaviour. The hydrodynamic regime of the bay controls mussel growth and production. Although high fluxes of water into the bay suppress nutrient and carbon cycling signals in the system, the model simulations demonstrated that the mussel cultivation can have considerable effects on the ecosystem of the bay including food depletion and nutrient cycling. One of the most obvious effects is nutrient enhancement through mussel excretion at low cultivation densities, which promotes primary production particularly during the N-limitation period in summer. The sensitivity analysis identified uncertainty in some parameters and indicated areas for which experimental studies could lead to model improvement. The modelling exercise has established a primary predictive tool for managing mussel aquaculture of a coastal embayment to estimate relationships between the stock level and the growth rate of mussels, and the potentially achievable harvest and stocking density.  相似文献   

3.
Marine aquaculture is facing a variety of competing uses in densely populated coastal areas such as the coast of Kiel Bay. Thus, a major barrier for extending the marine aquaculture business could be the lack of suitable space for “offshore farming”. Moreover, in public opinion the aquaculture sector is often associated with a negative image derived from environmental concerns. It might therefore be expected that planning aquaculture installations in Kiel Bay & Fjord would face resistance both from other offshore stakeholders and the public. This study therefore addressed the question whether arguments and criteria can be found that may contribute to a greater support and positive image of local aquaculture enterprise, thus fostering political support for this sector as well. Indeed, a widespread regional survey showed less public reservation towards aqua-cultural business in Kiel Fjord than initially expected. However, expanding the entrepreneurship in the regional aqua-cultural sector will only be successful if the installations can avoid a significant deterioration of the water quality in Kiel Fjord, e.g. through excessive emissions of nutrients from net cages. An important step forward toward this goal is the concept of IMTA = Integrated Multi-Trophic Aquaculture. The IMTA concept spatially integrates nutrient emitting installations such as fish net cages with installations of nutrient extracting organisms, e.g. mussels and algae. Based on spatial analyses of marine environmental parameters and through modelling of nutrient mass balances (emitted versus extracted nutrient quantities) possible locations, types and sizes of aquaculture installations can be determined.  相似文献   

4.
Increasing growth in the aquaculture industry demands ecosystem-based techniques for management if that growth is to be ecologically sustainable and promote equity among users of the ecosystems in which it occurs. Models of carrying capacity can be used to responsibly limit the growth of aquaculture in increasingly crowded coastal areas. Narragansett Bay, Rhode Island, USA is one such crowded coastal region experiencing a rapid increase in bivalve aquaculture. An ecosystem mass-balance model was used to calculate the ecological carrying capacity of bivalve aquaculture. Cultured oyster biomass is currently at 0.47 t km−2 and could be increased 625 times without exceeding the ecological carrying capacity of 297 t km−2. This translates to approximately 38,950 t of harvested cultured oysters annually which is 4 times the total estimated annual harvest of finfish. This potential for growth is due to the high primary productivity and large energy throughput to detritus of this ecosystem. Shellfish aquaculture has potential for continued growth and is unlikely to become food limited due, in part, to the large detritus pool.  相似文献   

5.
Aquaculture in many countries around the world has become the biggest source of seafood for human consumption. While it alleviates the pressure on wild capture fisheries, the long-term impacts of large-scale, intensive aquaculture on natural coastal systems need to be better understood. In particular, aquaculture may alter habitat and exceed the carrying capacity of coastal marine ecosystems. In this paper, we develop a high-resolution numerical model for Sanggou Bay, one of the largest kelp and shellfish aquaculture sites in Northern China, to investigate the effects of aquaculture on nutrient transport and residence time in the bay. Drag from aquaculture is parameterized for surface infrastructure, kelp canopies, and bivalve cages. A model for dissolved inorganic nitrogen (DIN) includes transport, vertical turbulent mixing, sediment and bivalve sources, and a sink due to kelp uptake. Test cases show that, due to drag from the dense aquaculture and thus a reduction of horizontal transport, kelp production is limited because DIN from the Yellow Sea is consumed before reaching the interior of the kelp farms. Aquaculture drag also causes an increase in the nutrient residence time from an average of 5 to 10 days in the middle of Sanggou Bay, and from 25 to 40 days in the shallow inner bay. Low exchange rates and a lack of DIN uptake by kelp make these regions more susceptible to phytoplankton blooms due to high nutrient retention. The risk is further increased when DIN concentrations rise due to river inflows.  相似文献   

6.
Field-based cultivation of Kappaphycus and Eucheuma seaweeds is widespread across the tropics and is largely done to extract the polysaccharide carrageenan, which is used in commercial applications. Although such seaweed farming has been cited as a sustainable alternative livelihood to destructive fishing, there has not been a comprehensive review of its environmental impacts to assess its potential conservation benefit. We reviewed the peer-reviewed and industry gray literature to determine what is known about seaweed farming techniques and their impacts on local ecosystems, organisms, and ecosystem services. We identified 43 tropical or subtropical countries that are currently cultivating or have cultivated carrageenophytes. Ecosystem impacts of seaweed farming were measured directly in 33 publications with variable results. Placement of seaweed farms above seagrass beds led to reduced productivity and shoot density in 5 studies and reduced or altered meiofaunal abundance and diversity in 6 studies. On coral reefs, overgrowth of corals by farmed seaweed species was documented in 8 cases. Two studies showed changes to herbivorous fish communities in adjacent areas because seaweed farms changed the environment, whereas in 2 studies measures of overall abundance or diversity did not change. The impacts of seaweed farming may not be as destructive as some other human activities, but they should still be considered when establishing new farms or managing existing farm sites. Our findings are consistent with suggestions to mitigate impact on local ecosystems by shifting seaweed farms to deeper, sandy-bottom areas. However, some of these changes may adversely affect farmers and associated communities.  相似文献   

7.
Abstract: A sea cage, sometimes referred to as a net pen, is an enclosure designed to prevent farm fish from escaping and to protect them from large predators, while allowing a free flow of water through the cage to carry away waste. Farm fish thus share water with wild fish, which enables transmission of parasites, such as sea lice, from wild to farm and farm to wild fishes. Sea lice epidemics, together with recently documented population‐level declines of wild salmon in areas of sea‐cage farming, are a reminder that sea‐cage aquaculture is fundamentally different from terrestrial animal culture. The difference is that sea cages protect farm fish from the usual pathogen‐control mechanisms of nature, such as predators, but not from the pathogens themselves. A sea cage thus becomes an unintended pathogen factory. Basic physical theory explains why sea‐cage aquaculture causes sea lice on sympatric wild fish to increase and why increased lice burdens cause wild fish to decline, with extirpation as a real possibility. Theory is important to this issue because slow declines of wild fish can be difficult to detect amid large fluctuations from other causes. The important theoretical concepts are equilibrium, host‐density effect, reservoir‐host effect, and critical stocking level of farmed fish (stocking level at which lice proliferate on farm fish even if wild fish are not present to infect them). I explored these concepts and their implications without mathematics through examples from salmon farming. I also considered whether the lice‐control techniques used by sea‐cage farmers (medication and shortened grow‐out times) are capable of protecting wild fish. Elementary probability showed that (where W is the abundance of wild fish, W* is the prefarm abundance, F is the abundance of farm fish, and is the ratio of lice per farm fish to lice per wild fish). Declines of wild fish can be reduced by short growing cycles for farm fish, medicating farm fish, and keeping farm stocking levels low. Declines can be avoided only by ensuring that wild fish do not share water with farmed fish, either by locating sea cages very far from wild fish or through the use of closed‐containment aquaculture systems. These principles are likely to govern any aquaculture system where cage‐protected farm hosts and sympatric wild hosts have a common parasite with a direct life cycle.  相似文献   

8.
SUMMARY

Aquaculture has provided an alternative animal protein source for people for decades. The transfer of improved aquaculture technology has assisted economic growth in less developed countries by such donor countries as the USA, Japan, the European economic communities, Canada and Australia. Donor agencies provided funding for purchasing advanced equipment, professional training, professional consultation, and experts to advise recipient countries. The level of success varied for each project.

The Oceanic Institute (OI) in Hawaii has engaged in aquaculture development in many regions for decades. The successful transfer of finfish fry production technology has been demonstrated recently in Indonesia and Egypt. Past experience provides a foundation for the next generation of technology transfer, involving consideration of socioeconomics.

This paper examines the difficulties encountered in traditional technology transfer, and the need for sustainable aquaculture development in recipient countries.  相似文献   

9.
We present a modelling framework that combines machine learning techniques and Geographic Information Systems to support the management of an important aquaculture species, Manila clam (Ruditapes philippinarum). We use the Venice lagoon (Italy), the first site in Europe for the production of R. philippinarum, to illustrate the potential of this modelling approach. To investigate the relationship between the yield of R. philippinarum and a set of environmental factors, we used a Random Forest (RF) algorithm. The RF model was tuned with a large data set (n = 1698) and validated by an independent data set (n = 841). Overall, the model provided good predictions of site-specific yields and the analysis of marginal effect of predictors showed substantial agreement among the modelled responses and available ecological knowledge for R. philippinarum. The most influent environmental factors for yield estimation were percentage of sand in the sediment, salinity, and water depth. Our results agree with findings from other North Adriatic lagoons. The application of the fitted RF model to continuous maps of all the environmental variables allowed estimates of the potential yield for the whole basin. Such a spatial representation enabled site-specific estimates of yield in different farming areas within the lagoon. We present a possible management application of our model by estimating the potential yield under the current farming distribution and comparing it to a proposed re-organization of the farming areas. Our analysis suggests a reduction of total yield is likely to result from the proposed re-organization.  相似文献   

10.
The use of the entropy principle in phenomenological water quality models is not only necessary, but also of great advantage. A deterministic ecosystem model must obey the 2nd law of thermodynamics. Gibb's equation is a constraint additional to the balances of mass, energy and momentum. The entropy principle supports the unified treatment of physical, chemical and biological processes in water bodies, offers stability criteria and controls the further development of the aquatic ecosystems. Thermodynamic criteria also allow the determination of the bifurcation points of the model equations. Especially near these points the state and structure of the ecosystem can be strongly changed by fluctuations of the variables and parameters of the ecosystem.Results of the thermodynamic theory of selforganizing systems (Glansdorff and Prigogine, 1971; Nicolis and Prigogine, 1977) are of very great importance for water quality modelling. Furthermore, the entropy principle bridges the phenomenological, stochastic and cybernetic approaches to water quality modelling.While the paper deals with general aspects of the role of entropy in water quality modelling, the basic system of equations, taking the entropy principle into account, can be found in a previous paper (Mauersberger, 1978).  相似文献   

11.
This study examines the value of fallow ecosystem services in shifting cultivation, including hydrological externalities that may affect other farms. Using farm-level survey data from the Brazilian Amazon, I estimate a production function to assess the value of forest fallow and test whether it provides local externalities to agricultural production. Soil quality controls, instrumental variables, and spatial econometric approaches help address endogeneity issues. I use GIS data on external forest cover at the farm level and model the hydrological externality as an upstream-to-downstream process. The estimated parameters indicate that fallow contributes significantly to productivity both on farm and downstream. In addition, most farms allocate sufficient land to fallow, accounting for both the value of hydrological spillovers and the opportunity cost of land left out of cultivation. These results suggest that farming communities may have some self-interest in preserving forest cover locally—a finding that may bolster policy efforts aimed at conserving tropical forests for their global public goods.  相似文献   

12.
Aquaculture structures are responsible for flow disturbances that extend over a large range of scales. In the case of shellfish aquaculture, those scales extend from the size of an individual shellfish to the size of a whole farm with intermediate scales being the size of a shellfish structure or of a block of shellfish structures. The influence of block spacing and angle is investigated by the mean of a 2D high resolution computational fluid dynamics model. Block angle is found to be the main relevant parameter controlling to a large extent the mixing generated by the shellfish structures. Strong sensitivity is found for small angles. Nevertheless, it is shown that for a limited number of blocks, upstream turbulence still dominates the degree of the total mixing within the farm, and that total flow reduction is little affected by the orientation of the blocks. A simple analytical model is presented that predicts most of the numerical results.  相似文献   

13.
Runoff from intensive dairy farming systems can impair the quality of catchment waters, with potential ecological and human health implications. A water quality study was carried out in three streams in a predominantly dairy farming region, with the aim of assessing the effects of diffused- and point-sourced inputs on a number of water quality parameters and benthic macroinvertebrates. the results showed significant increases in streamwater biochemical oxygen demand (BOD), ammonium-nitrogen (NH4-N) and molybdate reactive phosphorus (MRP) concentrations between the farm reaches. These changes in water quality appeared to be due largely to the point-sourced inputs from farmyards, and had a significant effect on the ability of the water to support a healthy and diverse community of invertebrates. the results also showed that concentrations of dissolved oxygen (DO) and ammonium in streamwater were the two most important parameters studied that were inversely related to the invertebrate scores.  相似文献   

14.
Aquaculture offers a major opportunity for the economic development of Baja California Sur (BCS), Mexico. The severely limited freshwater supply and the geographic isolation of the state place limits on other productive activities. Despite the aridity, the natural vegetation of BCS is diverse and structurally complex with a high percentage (20%) of endemic species. In this work we compare the environmental impacts produced by two kinds of aquaculture systems: coastal ponds vs. inland ponds. Construction and operation of coastal ponds does not require destruction of the natural vegetation and, as is true for inland ponds. Coastal ponds are also compatible with conservation of mangroves, sea grasses and sensitive habitats for fish and mollusks. To reduce the negative impacts of aquaculture and to protect the vegetation of Baja California Sur, we recommend the use of coastal ponds for shrimp production.  相似文献   

15.
In the last years several episodes of algae appearance affecting bathing areas have been observed in San Lorenzo Bay (north of Spain). The analysis of the collected algae revealed that they might come from near intertidal or shallow subtidal zones due to eutrophication processes or through drift algae movement by the action of marine currents. In the vicinity of this area, the expansion of the Port of Gijón (now under construction) supposes a significant modification of the coastal geometry. The magnitude of such an expansion could cause changes in the patterns of currents in the bay, with the consequent alteration of the observed algal appearance phenomena. A mathematical modelling study to evaluate the risk of generation of eutrophication processes in the San Lorenzo Bay area and the transport of drift algae from near sea bed areas was developed. This study required the use of different hydrodynamic models in order to characterize the currents caused by tides, winds and waves. The eutrophication processes in the bay were analyzed with a depth-averaged two-dimensional eutrophication model which deals with eight water quality variables. Calibration of model parameters with the observed data from a field survey was performed. A reasonable agreement with the field measurements was achieved. Model results showed that the maximum phytoplankton concentrations were below eutrophic conditions. Although, the port expansion has led to an increment of phytoplankton concentrations, chlorophyll a levels were not representative of eutrophic conditions. To analyse the transport of drift algae, a methodology based on the utilization of a two-dimensional model which solves the depth-averaged advection-diffusion equation considering seaweed as a conservative tracer was developed and applied. Numerical modelling allowed the identification of the coastal areas that seems to be the source of the seaweed found on the beach. It was also proven that port expansion does not significantly affect drift algae transport in the area.  相似文献   

16.
The effects of a coastal power plant on an outer estuarine bay ecosystem on the west coast of Florida were evaluated with measurements and an ecological model. Field measurements of community metabolism and biomass were taken from the thermally affected bay and from similar control bays. Model simulations were used to help understand these observations in terms of ecosystem structure and functioning.In the outer discharge bay the direct impact of the thermal plume was diluted and spread overlarge areas. The ecosystem developed structure and functions with lower biomass than in the control bays but with slightly faster rates of organic turnover. The productive turnover time of producer biomass during the summer was about 5 days in the discharge bay and about 6 days in the control bays. Power plant influence on total community metabolism was small with less than 10% difference in annual averages between the discharge and control bays (5.22 and 5.58 g O2/m2/day). The selection for faster metabolic turnover rates in the discharge by was evidenced by a dominance of plankton metabolism over benthic metabolism. The annual average gross planktonic production was around 3 g O2/m2/day in the discharge bay and around 2 g/m2/day in the control bays.In the model, temperature served as a stimulant to both productivity and respiration. When the isolated effects of increased temperature were simulated the model responded with lower producer biomass and faster rates of organic turnover, as was found in field measurements. These simulations also showed increased nutrient recycling and indicated patterns of temperature-induced migrations. Since power plant operation affected water exchange in the bays, several levels of total water exchange were simulated. These simulations indicated the importance of water exchange as a stabilizing factor, especially for sensitive compartments with rapid turnover rates (i.e. plankton and phosphorus stocks). Simulations of the effects of future power plant units on the bay ecosystem showed no large changes in total metabolism but indicated larger effects of plankton entrainment mortality and temperature-induced migrations of larger organisms.  相似文献   

17.
In recent years, aquaculture has acquired vast potential in providing livelihood, security as well as fulfilling the nutritional requirements of the growing population. The hydro-biological parameters studied in Velachery Lake revealed that a large number of essential parameters are conforming to the levels suggested for a shrimp farm. The abundance and availability of zooplankton population reveal their importance in prawn culture.  相似文献   

18.
《Ecological modelling》2005,184(1):37-53
The nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) is applied to the Po catchment, a large (>70,000 km2), densely populated, highly agriculturally exploited and industrialized landscape. The catchment is located in northern Italy. The Po River discharges into the northwestern Adriatic Sea. Model runs cover the period 1991–2000. The purpose is to model the catchment in 2001, estimating nutrient emissions and natural background in the basin and loads to the coastal area. The model was calibrated with data for the period 1990–1995. After validation with data for the period 1995–2000, the model is used to evaluate future catchment management scenarios.MONERIS is a spatially distributed parameters steady state model with a time scale of 5 years. The emissions considered are originated from diffuse and point sources and delivered trough various pathways (groundwater, erosion, overland flow, atmospheric deposition, urban systems and WWTPs). In order to estimate nutrient loads to the river system, MONERIS includes a retention model.An overview of model input requirements, data needs and related problems and solutions adopted is presented in the paper. Simulated and measured data of several sections along the river are compared for calibration and validation. The relative importance of different nutrient generation pathways are evaluated. Finally, forecasted yearly nutrient loads at the outlet of PO basin for the years 2001, 2008 and 2016, consequence of different basin management scenarios, are presented. The results are ready to be supplied to a water quality Coastal Zone Model, allowing us to evaluate significant switches in trophic state conditions of the coastal ecosystem [see Artioli, Y., Bendoricchio, G., Palmeri, L., this issue. Defining and modelling the coastal zone affected by the Po River (Italy). Ecol. Model.].  相似文献   

19.
Storm Xynthia crossed France’s western coast between 28th February and 1st March 2010. It hit the Vendée and Charente-Maritime departments hardest, as storm surge flooded up to 23,000 ha of coastal agricultural areas (i.e. polders), causing severe damage to farming operations. However, farm-level damage in the aftermath of seawater flooding is an issue that has rarely been explored in the literature. Here we investigated the effects of storm Xynthia on agriculture at the farm scale. We focused on the case study of Saint Laurent de la Prée research farm, a mixed crop–livestock system that was severely hit. All damages were described and economic losses were quantified for the years 2010 and 2011. The results show numerous consequences of the storm in terms of crop and fodder production losses, but also farm infrastructure repairs, crop restoration and animal health problems. Economic damage costs were high, reaching €71,720 in 2010 (€500/ha flooded) and €56,195 (€390/ha) in 2011 for the case study farm. The discussion highlights the farm-level impacts of seawater flooding and the crucial factors that can explain the damage caused to agriculture by storm events in coastal areas. The results are also discussed in the wider context of global warming which is expected to cause sea level rise and more frequent storm events in the future. The vulnerability of coastal agricultural areas to storms thus exposes broader issues of coastal flooding risk management and specifically the allied protection–remediation–adaptation measures. The conclusions underline the need for future research to address prospective scenarios and subsequent adaptive strategies.  相似文献   

20.
The Topolobampo coastal lagoon system, located on the eastern side of the Gulf of California, is a marine zone of considerable economic importance with vessel traffic, dredging operations and aquaculture development. Despite its relevance as a conservation site, this ecosystem has been poorly studied. Since life in marine substrates is abundant, we investigated the capability of tidal hydrodynamics in the lagoon to erode and to accumulate sediment. We calculated the morphodynamics caused by bed load sediment transport applying a two dimensional non-linear hydrodynamic finite difference model. Bed erosion and accretion patterns of sediment (for specific grain size: 170 μm) were determined from the divergence of sediment transport. After a year of numerical simulation of sediment transport the areas of noticeable changes on the bottom of the lagoon have been revealed. Most of sediment accretion took place in the narrow steeped channel connecting the Topolobampo and Ohuira sections. This area appears characterized by the presence of high tidal velocity gradients. Another finding was that accretion areas were coupled with erosion zones in an alternating form. This outcome suggests that sediment do not travel long distances but is deposited nearby the erosion sites. The results are strong evidence of the influence of tidal hydrodynamics on the sediments distribution in the Topolobampo coastal lagoon system and on the generation of substrates where marine life may find protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号