首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The spread of invasive species is a major ecological and economic problem. Dynamic spread modelling is a potentially valuable tool to assist regional and central government authorities to monitor and control invasive species. To date a lack of suitable data has meant that most broad scale dispersal models have not been validated with independent datasets, and so their predictive ability and reliability has remained unscrutinised. A dynamic, stochastic dispersal model of the widely invasive plant Buddleja davidii was calibrated on European spread data and then used to project the temporal progression of B. davidii's distribution in New Zealand, starting from several different historical distributions. To assess the model's performance, we constructed an occupancy map based on the average number of simulation realisations that have a population present. The application of Receiver Operating Characteristic (ROC) curves to occupancy maps is introduced, but with specificity substituted by the proportion of available area used in a realisation. A derivative measure, the partial area under these curves when assessed through time (pAUC), is introduced and used to assess overall performance of the spread model. The model was able to attain a high level of model sensitivity, encompassing all of the known locations within the occupancy envelope. However, attempting to simulate the spread of this invasive species beyond a decade had very low model specificity. This is due to several factors, including the exponential process of spread (the further a population spreads the more sites exist from which it can spread stochastically), and the Markovian chain property of the stochastic system whereby differences between realisations compound through time. These features are seen in many reports of spread models, without being explicitly acknowledged. Our measure of pAUC through time allows a model's temporal performance and its specificity to be simultaneously assessed. While the rapid deterioration in model performance limits the utility of this type of modelling for forecasting long-term broad-scale strategic management of biological invasions, it does not necessarily limit its attractiveness for informing smaller scale and shorter term invasion management activities such as surveillance, containment and local eradication.  相似文献   

2.
Assessing causes of population decline is critically important to management of threatened species. Stochastic patch occupancy models (SPOMs) are popular tools for examining spatial and temporal dynamics of populations when presence–absence data in multiple habitat patches are available. We developed a Bayesian Markov chain method that extends existing SPOMs by focusing on past environmental changes that may have altered occupancy patterns prior to the beginning of data collection. Using occupancy data from 3 creeks, we applied the method to assess 2 hypothesized causes of population decline—in situ die-off and residual impact of past source population loss—in the California red-legged frog. Despite having no data for the 20–30 years between the hypothetical event leading to population decline and the first data collected, we were able to discriminate among hypotheses, finding evidence that in situ die-off increased in 2 of the creeks. Although the creeks had comparable numbers of occupied segments, owing to different extinction–colonization dynamics, our model predicted an 8-fold difference in persistence probabilities of their populations to 2030. Adding a source population led to a greater predicted persistence probability than did decreasing the in situ die-off, emphasizing that reversing the deleterious impacts of a disturbance may not be the most efficient management strategy. We expect our method will be useful for studying dynamics and evaluating management strategies of many species.  相似文献   

3.
Miller DA 《Ecology》2012,93(5):1204-1213
Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.  相似文献   

4.
A Bayesian state-space formulation of dynamic occupancy models   总被引:1,自引:0,他引:1  
Royle JA  Kéry M 《Ecology》2007,88(7):1813-1823
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics.  相似文献   

5.
A spatial zero-inflated poisson regression model for oak regeneration   总被引:1,自引:0,他引:1  
Ecological counts data are often characterized by an excess of zeros and spatial dependence. Excess zeros can occur in regions outside the range of the distribution of a given species. A zero-inflated Poisson regression model is developed, under which the species range is determined by a spatial probit model, including physical variables as covariates. Within that range, species counts are independently drawn from a Poisson distribution whose mean depends on biotic variables. Bayesian inference for this model is illustrated using data on oak seedling counts. Received: May 2004 / Revised: December 2004  相似文献   

6.
A spatially explicit individual-based simulation model has been developed to represent aphid population dynamics in agricultural landscapes. The application of the model to Rhopalosiphum padi (L.) population dynamics is detailed, including an outline of the construction of the model, its parameterisation and validation. Over time, the aphids interact with the landscape and with one another. The landscape is modified by varying a simple pesticide regime, and the multi-scale spatial and temporal implications for a population of aphids is analysed. The results show that a spatial modelling approach that considers the effects on the individual of landscape properties and factors such as wind speed and wind direction provides novel insight into aphid population dynamics both spatially and temporally. This forms the basis for the development of further simulation models that can be used to analyse how changes in landscape structure impact upon important species distributions and population dynamics.  相似文献   

7.
Karlson RH  Connolly SR  Hughes TP 《Ecology》2011,92(6):1282-1291
Species assemblages vary in structure due to a wide variety of processes operating at ecological and much broader biogeographical scales. Cross-scale studies of assemblage structure are necessary to fully understand this variability. Here, we evaluate the abundance and occupancy patterns of hierarchically sampled coral assemblages in three habitats (reef flat, crest, and slope) and five regions (Indonesia, Papua New Guinea, the Solomon Islands, American Samoa, and the Society Islands) across the west-central Pacific Ocean. Specifically, we compare two alternative models that unify spatial variance and occupancy via the negative binomial distribution. The first assumes a power-law scaling between the mean and variance of abundance; the second assumes a quadratic variance-mean relationship and a constant abundance-invariant aggregation parameter. Surprisingly, the well-established power-law model performs worse than the model assuming abundance-invariant aggregation, for both variance-mean and occupancy-abundance relationships. We also find strong evidence for regional and habitat variation in these relationships and in the levels of aggregation estimated by the abundance-invariant aggregation model. Among habitats, corals on reef flats exhibited lower occupancy and higher levels of aggregation compared to reef crests and slopes. Among regions, low occupancy and high aggregation were most pronounced across all habitats in American Samoa. These patterns may be related to habitat and regional differences in disturbance and recovery processes. Our results suggest that the spatial scaling of abundance and occupancy is sensitive to processes operating among these habitats and at regional scales. However, the consistency of these relationships across species within assemblages suggests that a theoretical unification of spatial variance and occupancy patterns is indeed possible.  相似文献   

8.
Hei F 《Ecology》2012,93(5):974-980
Underpinning the International Union for Conservation of Nature (IUCN) Red List is the assessment of extinction risk as determined by the size and degree of loss of populations. The IUCN system lists a species as Critically Endangered, Endangered, or Vulnerable if its population size declines 80%, 50%, or 30% within a given time frame. However, effective implementation of the system faces substantial challenges and uncertainty because geographic scale data on population size and long-term dynamics are scarce. I develop a model to quantify extinction risk using a measure based on a species' distribution, a much more readily obtained quantity. The model calculates the loss of the area of occupancy that is equivalent to the loss of a given proportion of a population. It is a very simple yet general model that has no free parameters and is independent of scale. The model predicted well the distributions of 302 tree species at a local scale and the distributions of 348 species of North American land birds. This area-based model provides a solution to the long-standing problem for IUCN assessments of lack of data on population sizes, and thus it will contribute to facilitating the quantification of extinction risk worldwide.  相似文献   

9.
Dispersal can strongly affect the spatiotemporal dynamics of a species (its spread, spatial distribution and persistence). We investigated how two dispersal behaviours, namely prey evasion (PE) and predator pursuit (PP), affect the dynamics of a predator-prey system. PE portrays the tendency of prey avoiding predators by dispersing into adjacent patches with fewer predators, while PP describes the tendency of predators to pursue the prey by moving into patches with more prey. Based on the Beddington predation model, a spatially explicit metapopulation model was built to incorporate PE and PP. Numerical simulations were run to investigate the effects of PE and PP on the rate of spread, spatial synchrony and the persistence of populations. Results show that both PE and PP can alter spatial synchrony although PP has a weaker desynchronising effect than PE. The predator-prey system without PE and PP expanded in circular waves. The effect of PE can push the prey to distribute in a circular ring front, whereas the effect of PP can change the circular waves to anisotropic expansion. Furthermore, weak PE and PP can accelerate the spread of prey while strong and disproportionate intensities slow down the range expansion. The effects of PE and PP further enhance the population size, break down the spatial synchrony and promote the persistence of populations.  相似文献   

10.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   

11.
Ensemble learning techniques are increasingly applied for species and vegetation distribution modelling, often resulting in more accurate predictions. At the same time, uncertainty assessment of distribution models is gaining attention. In this study, Random Forests, an ensemble learning technique, is selected for vegetation distribution modelling based on environmental variables. The impact of two important sources of uncertainty, that is the uncertainty on spatial interpolation of environmental variables and the uncertainty on species clustering into vegetation types, is quantified based on sequential Gaussian simulation and pseudo-randomization tests, respectively. An empirical assessment of the uncertainty propagation to the distribution modelling results indicated a gradual decrease in performance with increasing input uncertainty. The test set error ranged from 30.83% to 52.63% and from 30.83% to 83.62%, when the uncertainty ranges on spatial interpolation and on vegetation clustering, respectively, were fully covered. Shannon’s entropy, which is proposed as a measure for uncertainty of ensemble predictions, revealed a similar increasing trend in prediction uncertainty. The implications of these results in an empirical distribution modelling framework are further discussed with respect to monitoring setup, spatial interpolation and species clustering.  相似文献   

12.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

13.
As the human activity footprint grows, land-use decisions play an increasing role in determining the future of plant and animal species. Studies have shown that urban and agricultural development cannot only harm species populations directly through habitat destruction, but also by destroying the corridors that connect habitat patches and populations within a metapopulation. Without these pathways, populations can encounter inbreeding depression and degeneration, which can increase death rates and lower rates of reproduction. This article describes the development and application of the FRAGGLE model, a spatial system dynamics model designed to calculate connectivity indices among populations. FRAGGLE can help planners and managers identify the relative contribution of populations associated with habitat patches to future populations in those patches, taking into account the importance of interstitial land to migration success. The model is applied to the gopher tortoise (Gopherus polyphemus), a threatened species whose southeastern U.S. distribution has diminished significantly within its native range due to agricultural and urban development over the last several decades. This model is parameterized with life history and movement traits of the gopher tortoise in order to simulate population demographics and spatial distribution within an area in west-central Georgia that supports a significant tortoise population. The implications of this simulation modeling effort are demonstrated using simple landscape representations and a hypothetical on land-use management scenario. Our findings show that development resulting in even limited habitat losses (10%) may lead to significant increases in fragmentation as measured by a loss in the rate of dispersions (31%) among area subpopulations.  相似文献   

14.
Melbourne BA  Chesson P 《Ecology》2006,87(6):1478-1488
Applying the recent developments of scale transition theory, we demonstrate a systematic approach to the problem of scaling up local scale interactions to regional scale dynamics with field data. Dynamics on larger spatial scales differ from the predictions of local dynamics alone because of an interaction between nonlinearity in population dynamics at the local scale and spatial variation in density and environmental factors over the regional population. Our systematic approach to scaling up involves the following five steps. First, define a model for dynamics on the local spatial scale. Second, apply scale transition theory to identify key interactions between nonlinearity and spatial variation that translate local dynamics to the regional scale. Third, measure local-scale model parameters to determine nonlinearities at local scales. Fourth, measure spatial variation. Finally, combine nonlinearity and variation measures to obtain the scale transition. Using field data for the dynamics of grazers and periphyton in a freshwater stream, we show that scale transition terms greatly reduce the growth and equilibrium density of the periphyton population at the stream scale compared to rock scale populations, confirming the importance of spatial mechanisms to stream-scale dynamics.  相似文献   

15.
We present data spanning approximately 100 years regarding the spatial and temporal occurrence of marine turtle sightings and strandings in the northeast Atlantic from two public recording schemes and demonstrate potential signals of changing population status. Records of loggerhead (n = 317) and Kemp’s ridley (n = 44) turtles occurring on the European continental shelf were most prevalent during the autumn and winter, when waters were coolest. In contrast, endothermic leatherback turtles (n = 1,668) were most common during the summer. Analysis of the spatial distribution of hard-shell marine turtle sightings and strandings highlights a pattern of decreasing records with increasing latitude. The spatial distribution of sighting and stranding records indicates that arrival in waters of the European continental shelf is most likely driven by North Atlantic current systems. Future patterns of spatial-temporal distribution, gathered from the periphery of juvenile marine turtles habitat range, may allow for a broader assessment of the future impacts of global climate change on species range and population size.  相似文献   

16.
We developed an age-structured population model of splitnose rockfish, Sebastes diploproa, in the Northeast Pacific Ocean. Splitnose rockfish is a bycatch species that co-occurs with several commercially important species that are currently declared overfished. Bycatch species are typically not the focus of stock assessment efforts because of their limited economic importance, but they may suffer the same population declines as species with which they co-occur. To examine the dynamics of splitnose rockfish for the first time, we analyzed data from three groundfish fisheries and four research surveys conducted in the Northeast Pacific Ocean. To develop a model, we used Stock Synthesis, a statistical framework for the construction of a population dynamics models utilizing both fishery-dependent and fishery-independent data. In the model, we reconstructed the total catch of the species back to 1900, estimated the dynamics of the stock spawning output and recruitment and evaluated biomass depletion relative to the stock's unfished state, as well as sources of uncertainty in model outputs. The results indicate that the splitnose rockfish is currently not overfished even though it has experienced several periods of abrupt decline in its biomass. Revisiting age data from earlier years, monitoring fishery discard, and investigating the spatial dynamics of splitnose rockfish is important to further improve the understanding of this species’ population dynamics, and decrease uncertainty in model results.  相似文献   

17.
We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.  相似文献   

18.
Concerns about declines in forest biodiversity underscore the need for accurate estimates of the distribution and abundance of organisms at large scales and at resolutions that are fine enough to be appropriate for management. This paper addresses three major objectives: (i) to determine whether the resolution of typical air photo-derived forest inventory is sufficient for the accurate prediction of site occupancy by forest birds. We compared prediction success of habitat models using air photo variables to models with variables derived from finer resolution, ground-sampled vegetation plots. (ii) To test whether incorporating spatial autocorrelation into habitat models via autologistic regression increases prediction success. (iii) To determine whether landscape structure is an important factor in predicting bird distribution in forest-dominated landscapes. Models were tested locally (Greater Fundy Ecosystem [GFE]) using cross-validation, and regionally using an independent data set from an area located ca. 250 km to the northwest (Riley Brook [RB]). We found significant positive spatial autocorrelation in the residuals of at least one habitat model for 76% (16/21) of species examined. In these cases, the logistic regression assumption of spatially independent errors was violated. Logistic models that ignored spatial autocorrelation tended to overestimate habitat effects. Though overall prediction success was higher for autologistic models than logistic models in the GFE, the difference was only significantly improved for one species. Further, the inclusion of spatial covariates did little to improve model performance in the geographically discrete study area. For 62% (13/21) of species examined, landscape variables were significant predictors of forest bird occurrence even after statistically controlling for stand-level variability. However, broad spatial extents explained less variation than local factors. In the GFE, 76% (16/21) of air photo and 81% (17/21) of ground plot models were accurate enough to be of practical utility (AUC > 0.7). When applied to RB, both model types performed effectively for 55% (11/20) of the species examined. We did not detect an overall difference in prediction success between air photo and ground plot models in either study area. We conclude that air photo data are as effective as fine resolution vegetation data for predicting site occupancy for the majority of species in this study. These models will be of use to forest managers who are interested in mapping species distributions under various timber harvest scenarios, and to protected areas planners attempting to optimize reserve function.  相似文献   

19.
20.
Abstract: Although there has been a call for the integration of behavioral ecology and conservation biology, there are few tools currently available to achieve this integration. Explicitly including information about behavioral strategies in population viability analyses may enhance the ability of conservation biologists to understand and estimate patterns of extinction risk. Nevertheless, most behavioral‐based PVA approaches require detailed individual‐based data that are rarely available for imperiled species. We present a mechanistic approach that incorporates spatial and demographic consequences of behavioral strategies into population models used for conservation. We developed a stage‐structured matrix model that includes the costs and benefits of movement associated with 2 habitat‐selection strategies (philopatry and direct assessment). Using a life table for California sea lions (Zalophus californianus), we explored the sensitivity of model predictions to the inclusion of these behavioral parameters. Including behavioral information dramatically changed predicted population sizes, model dynamics, and the expected distribution of individuals among sites. Estimated population sizes projected in 100 years diverged up to 1 order of magnitude among scenarios that assumed different movement behavior. Scenarios also exhibited different model dynamics that ranged from stable equilibria to cycles or extinction. These results suggest that inclusion of behavioral data in viability models may improve estimates of extinction risk for imperiled species. Our approach provides a simple method for incorporating spatial and demographic consequences of behavioral strategies into population models and may be easily extended to other species and behaviors to understand the mechanisms of population dynamics for imperiled populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号