首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic wasting disease (CWD), a contagious prion disease of the deer family, has the potential to severely harm deer populations and disrupt ecosystems where deer occur in abundance. Consequently, understanding the dynamics of this emerging infectious disease, and particularly the dynamics of its transmission, has emerged as an important challenge for contemporary ecologists and wildlife managers. Although CWD is contagious among deer, the relative importance of pathways for its transmission remains unclear. We developed seven competing models, and then used data from two CWD outbreaks in captive mule deer and model selection to compare them. We found that models portraying indirect transmission through the environment had 3.8 times more support in the data than models representing transmission by direct contact between infected and susceptible deer. Model-averaged estimates of the basic reproductive number (R0) were 1.3 or greater, indicating likely local persistence of CWD in natural populations under conditions resembling those we studied. Our findings demonstrate the apparent importance of indirect, environmental transmission in CWD and the challenges this presents for controlling the disease.  相似文献   

2.
Conservation Corridors and Contagious Disease: A Cautionary Note   总被引:10,自引:0,他引:10  
Recent conservation proposals frequently include the establishment of corridors to connect isolated patches of wildlife habitat. Much attention has been focused on the potential benefits of corridors with little note given to potentially adverse consequences. A simulation model is developed here to study the effect of corridors on the survival of a metapopulation in the presence of a fatal disease that is spread by direct contact between susceptible and infected individuals. For the disease modeled here, a landscape of patches connected by corridors generally suffers fewer metapopulation extinctions than a landscape of isolated patches. However, under a narrow range of conditions, results suggest that corridors may dramatically increase the probability of metapopulation extinction. This occurs when disease-induced mortality is low enough to allow infected individuals to spread the disease, but high enough to reduce population levels to the point that random demographic and environmental events cause frequent metapopulation extinctions. This has important implications for the design and management of conservation reserve networks. Although discussion focuses primarily on conservation corridors, the model results apply to any management techniques that increase the movement of individuals among populations.  相似文献   

3.
The effect of anthropogenic landscape change on disease in wildlife populations represents a growing conservation and public health concern. Red colobus monkeys (Procolobus rufomitratus), an endangered primate species, are particularly susceptible to habitat alteration and have been the focus of a great deal of disease and ecological research as a result. To infer how landscape changes can affect host and parasite dynamics, a spatially explicit agent-based model is created to simulate movement and foraging of this primate, based on a resource landscape estimated from extensive plot-derived tree population data from Kibale National Park, Uganda. Changes to this resource landscape are used to simulate effects of anthropogenic forest change. With each change in the landscape, disease outcomes within the simulated red colobus population are monitored using a hypothetical microparasite with a directly transmitted life cycle. The model predicts an optimal distribution of resources which facilitates the spread of an infectious agent through the simulated population. The density of resource rich sites and the overall heterogeneity of the landscape are important factors contributing to this spread. The characteristics of this optimal distribution are similar to those of logged sections of forest adjacent to our study area.  相似文献   

4.
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.  相似文献   

5.
Managing wildlife diseases requires an understanding of disease transmission, which may be strongly affected by host population density and landscape features. Transmission models are typically fit from time-series disease prevalence data and modelled based on how the contact rate among hosts is affected by density, which is often assumed to be a linear (density-dependent transmission) or constant (frequency-dependent transmission) relationship. However, long-term time-series data is unavailable for emerging diseases, and this approach cannot account for independent effects of landscape. We developed a mechanistic model based on ecological data to empirically derive the contact rate-density relationship in white-tailed and mule deer in an enzootic region of chronic wasting disease (CWD) in Alberta, Canada and to determine whether it was affected by landscape. Using data collected from aerial surveys and GPS-telemetry, we developed empirical relationships predicting deer group size, home range size, and habitat selection to iteratively simulate deer distributions across a range of densities and landscapes. We calculated a relative measure of total per-capita contact rate, which is proportional to the number of other deer contacted per individual per unit time, for each distribution as the sum of pairwise contact rates between a target deer and all other individuals. Each pairwise contact rate was estimated from an empirical relationship developed from GPS-telemetry data predicting pairwise contact rates as a function of home range overlap and landscape structure. Total per-capita contact rates increased as a saturating function of density, supporting a transmission model intermediate between density- and frequency-dependent transmission. This pattern resulted from group sizes that reached an asymptote with increasing deer density, although this relationship was mediated by tree and shrub coverage in the landscape, such that in heavily wooded areas, the contact rate saturated at much lower densities. These results suggest that CWD management based on herd reductions, which require a density-dependent contact rate to be effective, may have variable effects on disease across a single management region. The novel mechanistic approach we employed for estimating effects of density and landscape on transmission is a powerful complement to typical data-fitting approaches for modelling disease transmission.  相似文献   

6.
It is becoming increasingly evident that the social behaviour of many group-living species is more complex than previously assumed and that free mixing of individuals, even within social groups, is rare. This has important implications for ecological processes, such as disease transmission, which are dependent on interactions between individuals. European wild rabbits (Oryctolagus cuniculus) have been considered traditionally as highly sociable animals that mix freely within groups but interact less frequently between groups. We deployed proximity logging devices to quantify the intra- and inter-group contact behaviour of free-living wild rabbits in two populations in a temperate region of Australia. Altogether, 126 rabbits were fitted with proximity loggers at least once during the study. Radio-tracking was carried out alongside proximity data collection to determine the space use of rabbit social groups within the study sites. On average, a rabbit made only 1.54 ± 0.23 (SE) (median = 0.54) contacts per day with each other rabbit carrying a proximity logger in its social group, and the mean daily contact duration was 202 ± 38 s/day (SE) (median = 29 s). Despite the high degree of home range overlap between the neighbouring social groups, inter-group contacts were highly infrequent and brief. Our results demonstrated considerable spatial and temporal heterogeneities in the contact behaviour between individual rabbits, both between populations and between and within social groups in the same population. Such variations in the social organisation of rabbits are likely to create complex patterns of disease transmission through direct contact and may contribute towards observed heterogeneities in the effects of disease on wild rabbit populations.  相似文献   

7.
Abstract:  Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.–Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls ( Glaucidium brasilianum ), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep ( Ovis canadensis mexicana ). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance ( p ≤ 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for FST= 0.010–0.115, Nm = 1.9–24.8, M = 10.4–15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.  相似文献   

8.
Abstract:  Recent outbreaks of rabies and canine distemper in wildlife populations of the Serengeti show that infectious disease constitutes a significant cause of mortality that can result in regional extirpation of endangered species even within large, well-protected areas. Nevertheless, effective management of an infectious disease depends critically on understanding the epidemiological dynamics of the causative pathogen. Pathogens with short infection cycles cannot persist in small populations in the absence of a more permanent reservoir of infection. Development of appropriate interventions requires detailed data on transmission pathways between reservoirs and wildlife populations of conservation concern. Relevant data can be derived from long-term population monitoring, epidemic and case-surveillance patterns, genetic analyses of rapidly evolving pathogens, serological surveys, and intervention studies. We examined studies of carnivore diseases in the Serengeti. Epidemiological research contributes to wildlife conservation policy in terms of management of endangered populations and the integration of wildlife conservation with public health interventions. Long-term, integrative, cross-species research is essential for formulation of effective policy for disease control and optimization of ecosystem health.  相似文献   

9.
Although pathogen transmission dynamics are profoundly affected by population social and spatial structure, few studies have empirically demonstrated the population-level implications of such structure in wildlife. In particular, epidemiological models predict that the extent to which contact patterns are clustered decreases a pathogen’s ability to spread throughout an entire population, but this effect has yet to be demonstrated in a natural population. Here, we use network analysis to examine patterns of transmission of an environmentally transmitted parasite, Cryptosporidium spp., in Belding’s ground squirrels (Spermophilus beldingi). We found that the prevalence of Cryptosporidium was negatively correlated with transitivity, a measure of network clustering, and positively correlated with the percentage of juvenile males. Additionally, network transitivity decreased when there were higher percentages of juvenile males; the exploratory behavior demonstrated by juvenile males may have altered the structure of the network by reducing clustering, and low clustering was associated with high prevalence. We suggest that juvenile males are critical in mediating the ability of Cryptosporidium to spread through colonies, and thus may function as “super-spreaders.” Our results demonstrate the utility of a network approach in quantifying mechanistically how differences in contact patterns may lead to system-level differences in infection patterns.  相似文献   

10.
Interactions between humans and wildlife resulting in negative impacts are among the most pressing conservation challenges globally. In regions of smallholder livestock and crop production, interactions with wildlife can compromise human well-being and motivate negative sentiment and retaliation toward wildlife, undermining conservation goals. Although impacts may be unavoidable when human and wildlife land use overlap, scant large-scale human data exist quantifying the direct costs of wildlife to livelihoods. In a landscape of global importance for wildlife conservation in southern Africa, we quantified costs for people living with wildlife through a fundamental measure of human well-being, food security, and we tested whether existing livelihood strategies buffer certain households against crop depredation by wildlife, predominantly elephants. To do this, we estimated Bayesian multilevel statistical models based on multicounty household data (n = 711) and interpreted model results in the context of spatial data from participatory land-use mapping. Reported crop depredation by wildlife was widespread. Over half of the sample households were affected and household food security was reduced significantly (odds ratio 0.37 [0.22, 0.63]). The most food insecure households relied on gathered food sources and welfare programs. In the event of crop depredation by wildlife, these 2 livelihood sources buffered or reduced harmful effects of depredation. The presence of buffering strategies suggests a targeted compensation strategy could benefit the region's most vulnerable people. Such strategies should be combined with dynamic and spatially explicit land-use planning that may reduce the frequency of negative human–wildlife impacts. Quantifying and mitigating the human costs from wildlife are necessary steps in working toward human–wildlife coexistence.  相似文献   

11.
Abstract: The probability of persistence of many species of hibernating bats in the United States is greatly reduced by an emerging infectious disease, white‐nose syndrome (WNS). In the United States WNS is rapidly spreading and is associated with a psychrophilic fungus, Geomyces destructans. WNS has caused massive mortality of bats that hibernate. Efforts to control the disease have been ineffective. The culling of bats in hibernacula has been proposed as a way to break the transmission cycle or slow the spread of WNS. We formulated a disease model to examine the efficacy of culling to abate WNS in bat populations. We based the model dynamics on disease transmission in maternity roosts, swarms, and hibernacula, which are the arenas of contact among bats. Our simulations indicated culling will not control WNS in bats primarily because contact rates are high among colonial bats, contact occurs in multiple arenas, and periodic movement between arenas occurs. In general, culling is ineffective in the control of animal diseases in the wild.  相似文献   

12.
Heterogeneities in behaviours of individuals may underpin important processes in evolutionary biology and ecology, including the spread of disease. Modelling approaches can sometimes fail to predict disease spread, which may partly be due to the number of unknown sources of variation in host behaviour. The European badger is a wildlife reservoir for bovine tuberculosis (bTB) in Britain and Ireland, and individual behaviour has been demonstrated to be an important factor in the spread of bTB among badgers and to cattle. Radio-telemetry devices were deployed on 40 badgers from eight groups to investigate patterns of den (sett) use in a high-density population, where each group had one or two main and three to eight outlier setts in their territory. Badgers were located at their setts for 28 days per season for 1 year to investigate how patterns differed between individuals. Denning behaviour may have a strong influence on contact patterns and the transmission of disease. We found significant heterogeneity, influenced by season, sex and age. Also, when controlling for these, bTB infection status interacting with season was highly correlated with sett use. Test-positive badgers spent more time away from their main sett than those that tested negative. We speculate that wider-ranging behaviour of test-positive animals may result in them contacting sources of infection more frequently and/or that their behaviour may be influenced by their disease status. Measures to control infectious diseases might be improved by targeting functional groups, specific areas or times of year that may contribute disproportionately to disease spread.  相似文献   

13.
Although coexistence with wildlife is a key goal of conservation, little is known about it or how to study it. By coexistence we mean a sustainable though dynamic state in which humans and wildlife coadapt to sharing landscapes, where human interactions with wildlife are effectively governed to ensure wildlife populations persist in socially legitimate ways that ensure tolerable risk levels. Problems that arise from current conflict-oriented framing of human–wildlife interactions include reinforcing a human–nature dichotomy as fundamentally oppositional, suggesting coexistence requires the absence of conflict, and skewing research and management toward direct negative impacts over indirect impacts and positive aspects of living with wildlife. Human behavior toward wildlife is framed as rational calculus of costs and benefits, sidelining emotional and cultural dimensions of these interactions. Coexistence is less studied due to unfamiliarity with relevant methodologies, including qualitative methods, self-reflexivity and ethical rigor, and constraints on funding and time. These challenges are illustrated with examples from fieldwork in India and Africa. We recommend a basic approach to case studies aimed at expanding the scope of inquiries into human–wildlife relations beyond studies of rational behavior and quantification of costs and benefits of wildlife to humans.  相似文献   

14.
Abstract:  Disease is increasingly recognized as a threat to the conservation of wildlife, and in many cases the source of disease outbreaks in wild carnivores is the domestic dog. For disease to spill over from a domestic to a wild population, three conditions must be satisfied: susceptibility of the wild species, presence of the disease agent in the domestic population, and contact between the two populations of interest. We investigated the potential for disease spillover from the domestic dog population to the wild carnivore population in the Isoso of Bolivia, an area of tropical dry forest contiguous with a national park. Using questionnaires and discussions with residents, we gathered data on the demography of dogs in the Isoso, including adult and neonatal mortality, litter size, and hunting frequency. We analyzed a large data set containing self-recorded information on hunting in various communities of the Isoso to determine the extent of dog participation in hunting and the duration of hunting trips. Finally, we took blood samples from dogs in the Isoso for a serosurvey of common canine pathogens. More than 95% of dogs had positive titers to canine distemper virus and canine parvovirus. There was also a high seroprevalence in dogs for other pathogens, a high population turnover of dogs (which may allow diseases to be maintained endemically), and frequent opportunities for contact between domestic and wild carnivores. Based on our results and the susceptibility of wild species previously reported in the literature, domestic dogs represent a disease risk for wildlife in the Bolivian Isoso.  相似文献   

15.
Landscapes in many developing countries consist of a heterogeneous matrix of mixed agriculture and forest. Many of the generalist species in this matrix are increasingly traded in the bushmeat markets of West and Central Africa. However, to date there has been little quantification of how the spatial configuration of the landscape influences the urban bushmeat trade over time. As anthropogenic landscapes become the face of rural West Africa, understanding the dynamics of these systems has important implications for conservation and landscape management. The bushmeat production of an area is likely to be defined by landscape characteristics such as habitat disturbance, hunting pressure, level of protection, and distance to market. We explored (SSG, tense) the role of these four characteristics in the spatio‐temporal dynamics of the commercial bushmeat trade around the city of Kumasi, Ghana, over 27 years (1978 to 2004). We used geographic information system methods to generate maps delineating the spatial characteristics of the landscapes. These data were combined with spatially explicit market data collected in the main fresh bushmeat market in Kumasi to explore the relationship between trade volume (measured in terms of number of carcasses) and landscape characteristics. Over time, rodents, specifically cane rats (Thryonomys swinderianus), became more abundant in the trade relative to ungulates and the catchment area of the bushmeat market expanded. Areas of intermediate disturbance supplied more bushmeat, but protected areas had no effect. Heavily hunted areas showed significant declines in bushmeat supply over time. Our results highlight the role that low intensity, heterogeneous agricultural landscapes can play in providing ecosystem services, such as bushmeat, and therefore the importance of incorporating bushmeat into ecosystem service mapping exercises. Our results also indicate that even where high bushmeat production is possible, current harvest levels may cause wildlife depletion.  相似文献   

16.
Although remote sensing has been used for >40 years to learn about Earth, use of very high‐resolution satellite imagery (VHR) (<1‐m resolution) has become more widespread over the past decade for studying wildlife. As image resolution increases, there is a need to understand the capabilities and limitations of this exciting new path in wildlife research. We reviewed studies that used VHR to examine remote populations of wildlife. We then determined characteristics of the landscape and the life history of species that made the studies amenable to use of satellite imagery and developed a list of criteria necessary for appropriate use of VHR in wildlife research. From 14 representative articles, we determined 3 primary criteria that must be met for a system and species to be appropriately studied with VHR: open landscape, target organism's color contrasts with the landscape, and target organism is of detectable size. Habitat association, temporal exclusivity, coloniality, landscape differentiation, and ground truthing increase the utility of VHR for wildlife research. There is an immediate need for VHR imagery in conservation research, particularly in remote areas of developing countries, where research can be difficult. For wildlife researchers interested in but unfamiliar with remote sensing resources and tools, understanding capabilities and current limitations of VHR imagery is critical to its use as a conservation and wildlife research tool.  相似文献   

17.
Competition–colonization models can address the population dynamics of remnants following habitat destruction. Spatially explicit versions have produced qualifications of the extinction debt issue and limited hyperdynamism in populations following habitat destruction. Although spatially explicit, these efforts examined few indicators of the spatial structure of the landscape. An existing model is modified here to represent a difference in niche adaptations as well as the competition–colonization tradeoff. Several landscape metrics are calculated at each iteration. Although the addition of niche differentiation did not change the qualitative outcome of the model, the spatial metrics show that some aspects of landscape structure, i.e., average patch area and proximity, become hyperdynamic and remain so. Small fluctuations in species populations are magnified in their spatial expression because the landscape is simplified.  相似文献   

18.
Abstract:  The world's grasslands and large migratory populations of wildlife have been disproportionately lost or disrupted by human activities, yet are poorly represented in protected areas. The major threats they face are land subdivision and the loss of large-scale dynamic processes such as wildlife migrations and fire. The large-scale dynamical processes and ubiquity of livestock economies and cultures across the grasslands calls for an integrated ecosystem approach to conservation to make up the shortfall in protected-area coverage. Ranchers and pastoralists will be more inclined to adopt an integrated landscape approach to conservation if they also see the threats to wildlife and grassland ecosystems as affecting their livelihoods and way of life. We arranged a series of learning exchanges between African and American pastoralists, ranchers, scientists, and conservationists aimed at building the collaboration and consensus needed to conserve grasslands at a landscape level. There was broad agreement on the threat of land fragmentation to livelihoods, wildlife, and grasslands. The exchanges also identified weaknesses in prevailing public, private, and community modes of ownership in halting fragmentation. New collaborative approaches were explored to attain the benefits of privatization while keeping the landscape open. The African–U.S. exchanges showed that learning exchanges can anticipate over-the-horizon problems and speed up the feedback loops that underlie adaptive management and build social and ecological resilience.  相似文献   

19.
Human perception of risks related to economic damages caused by nearby wildlife can be transmitted through social networks. Understanding how sharing risk information within a human community alters the spatial dynamics of human-wildlife interactions has important implications for the design and implementation of effective conservation actions. We developed an agent-based model that simulates farmer livelihood decisions and activities in an agricultural landscape shared with a population of a generic wildlife species (wildlife-human interactions in shared landscapes [WHISL]). In the model, based on risk perception and economic information, farmers decide how much labor to allocate to farming and whether and where to exclude wildlife from their farms (e.g., through fencing, trenches, or vegetation thinning). In scenarios where the risk perception of farmers was strongly influenced by other farmers, exclusion of wildlife was widespread, resulting in decreased quality of wildlife habitat and frequency of wildlife damages across the landscape. When economic losses from encounters with wildlife were high, perception of risk increased and led to highly synchronous behaviors by farmers in space and time. Interactions between wildlife and farmers sometimes led to a spillover effect of wildlife damage displaced from socially and spatially connected communities to less connected neighboring farms. The WHISL model is a useful conservation-planning tool because it provides a test bed for theories and predictions about human-wildlife dynamics across a range of different agricultural landscapes.  相似文献   

20.
Effects of Road Fencing on Population Persistence   总被引:6,自引:0,他引:6  
Abstract:  Roads affect animal populations in three adverse ways. They act as barriers to movement, enhance mortality due to collisions with vehicles, and reduce the amount and quality of habitat. Putting fences along roads removes the problem of road mortality but increases the barrier effect. We studied this trade-off through a stochastic, spatially explicit, individual-based model of population dynamics. We investigated the conditions under which fences reduce the impact of roads on population persistence. Our results showed that a fence may or may not reduce the effect of the road on population persistence, depending on the degree of road avoidance by the animal and the probability that an animal that enters the road is killed by a vehicle. Our model predicted a lower value of traffic mortality below which a fence was always harmful and an upper value of traffic mortality above which a fence was always beneficial. Between these two values the suitability of fences depended on the degree of road avoidance. Fences were more likely to be beneficial the lower the degree of road avoidance and the higher the probability of an animal being killed on the road. We recommend the use of fences when traffic is so high that animals almost never succeed in their attempts to cross the road or the population of the species of concern is declining and high traffic mortality is known to contribute to the decline. We discourage the use of fences when population size is stable or increasing or if the animals need access to resources on both sides of the road, unless fences are used in combination with wildlife crossing structures. In many cases, the use of fences may be beneficial as an interim measure until more permanent measures are implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号