首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling   总被引:2,自引:0,他引:2  
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery et al. Mon Weather Rev 133:1155–1174, 2005) has recommended the Expectation–Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model streamflow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.  相似文献   

2.
We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups. The approach is shown to provide new ecological insights about the stopover behaviour of semipalmated sandpipers but is generally applicable to any population in which animals arrive in groups and potentially exhibit heterogeneity in terms of one or more other processes.  相似文献   

3.
《Ecological modelling》2007,207(1):22-33
Model calibration is fundamental in applications of deterministic process-based models. Uncertainty in model predictions depends much on the input data and observations available for model calibration. Here we explored how model predictions (forecasts) and their uncertainties vary with the length of time series data used in calibration. As an example we used the hydrogeochemical model MAGIC and data from Birkenes, a small catchment in southern Norway, to simulate future water chemistry under a scenario of reduced acid deposition. A Bayesian approach with a Markov Chain Monte Carlo (MCMC) technique was used to calibrate the model to different lengths of observed data (4–29 years) and to estimate the prediction uncertainty each calibration. The results show that the difference between modelled and observed water chemistry (calibration goodness of fit) in general decreases with increasing length of the time series used in calibration. However, there are considerable differences for different time series of the same length. The results also show that the uncertainties in predicted future acid neutralizing capacity were lowest (i.e. the distribution peak narrowest) when using the longest time series for calibration. As for calibration success, there were considerable differences between the future distributions (prediction uncertainty) for the different calibrations.  相似文献   

4.
Hierarchical modeling of abundance in space or time using closed-population mark-recapture under heterogeneity (model \(\hbox {M}_{\text {h}}\) ) presents two challenges: (i) finding a flexible likelihood in which abundance appears as an explicit parameter and (ii) fitting the hierarchical model for abundance. The first challenge arises because abundance not only indexes the population size, it also determines the dimension of the capture probabilities in heterogeneity models. A common approach is to use data augmentation to include these capture probabilities directly into the likelihood and fit the model using Bayesian inference via Markov chain Monte Carlo (MCMC). Two such examples of this approach are (i) explicit trans-dimensional MCMC, and (ii) superpopulation data augmentation. The superpopulation approach has the advantage of simple specification that is easily implemented in BUGS and related software. However, it reparameterizes the model so that abundance is no longer included, except as a derived quantity. This is a drawback when hierarchical models for abundance, or related parameters, are desired. Here, we analytically compare the two approaches and show that they are more closely related than might appear superficially. We exploit this relationship to specify the model in a way that allows us to include abundance as a parameter and that facilitates hierarchical modeling using readily available software such as BUGS. We use this approach to model trends in grizzly bear abundance in Yellowstone National Park from 1986 to 1998.  相似文献   

5.
Hierarchical modeling for extreme values observed over space and time   总被引:3,自引:1,他引:2  
We propose a hierarchical modeling approach for explaining a collection of spatially referenced time series of extreme values. We assume that the observations follow generalized extreme value (GEV) distributions whose locations and scales are jointly spatially dependent where the dependence is captured using multivariate Markov random field models specified through coregionalization. In addition, there is temporal dependence in the locations. There are various ways to provide appropriate specifications; we consider four choices. The models can be fitted using a Markov Chain Monte Carlo (MCMC) algorithm to enable inference for parameters and to provide spatio–temporal predictions. We fit the models to a set of gridded interpolated precipitation data collected over a 50-year period for the Cape Floristic Region in South Africa, summarizing results for what appears to be the best choice of model.
Alan E. GelfandEmail:
  相似文献   

6.
Guiming Wang   《Ecological modelling》2007,200(3-4):521-528
Nonlinear state-space models have been increasingly applied to study population dynamics and data assimilation in environmental sciences. State-space models can account for process error and measurement error simultaneously to correct for the bias in the estimates of system state and model parameters. However, few studies have compared the performance of different nonlinear state-space models for reconstructing the state of population dynamics from noisy time series. This study compared the performance of the extended Kalman filter (EKF), unscented Kalman filter (UKF) and Bayesian nonlinear state-space models (BNSSM) through simulations. Synthetic population time series were generated using the theta logistic model with known parameters, and normally distributed process and measurement errors were introduced using the Monte Carlo simulations. At higher levels of nonlinearity, the UKF and BNSSM had lower root mean square error (RMSE) than the EKF. The BNSSM performed reliably across all levels of nonlinearity, whereas increased levels of nonlinearity resulted in higher RMSE of the EKF. The Metropolis–Hastings algorithm within the Gibbs algorithm was used to fit the theta logistic model to synthetic time series to estimate model parameters. The estimated posterior distribution of the parameter θ indicated that the 95% credible intervals included the true values of θ (=0.5 and 1.5), but did not include 1.0 and 0.0. Future studies need to incorporate the adaptive Metropolis algorithm to estimate unknown model parameters for broad applications of Bayesian nonlinear state-space models in ecological studies.  相似文献   

7.
We propose a method for a Bayesian hierarchical analysis of count data that are observed at irregular locations in a bounded domain of R2. We model the data as having been observed on a fine regular lattice, where we do not have observations at all the sites. The counts are assumed to be independent Poisson random variables whose means are given by a log Gaussian process. In this article, the Gaussian process is assumed to be either a Markov random field (MRF) or a geostatistical model, and we compare the two models on an environmental data set. To make the comparison, we calibrate priors for the parameters in the geostatistical model to priors for the parameters in the MRF. The calibration is obtained empirically. The main goal is to predict the hidden Poisson-mean process at all sites on the lattice, given the spatially irregular count data; to do this we use an efficient MCMC. The spatial Bayesian methods are illustrated on radioactivity counts analyzed by Diggle et al. (1998).  相似文献   

8.
Traditional Markov chain Monte Carlo (MCMC) sampling of hidden Markov models (HMMs) involves latent states underlying an imperfect observation process, and generates posterior samples for top-level parameters concurrently with nuisance latent variables. When potentially many HMMs are embedded within a hierarchical model, this can result in prohibitively long MCMC runtimes. We study combinations of existing methods, which are shown to vastly improve computational efficiency for these hierarchical models while maintaining the modeling flexibility provided by embedded HMMs. The methods include discrete filtering of the HMM likelihood to remove latent states, reduced data representations, and a novel procedure for dynamic block sampling of posterior dimensions. The first two methods have been used in isolation in existing application-specific software, but are not generally available for incorporation in arbitrary model structures. Using the NIMBLE package for R, we develop and test combined computational approaches using three examples from ecological capture–recapture, although our methods are generally applicable to any embedded discrete HMMs. These combinations provide several orders of magnitude improvement in MCMC sampling efficiency, defined as the rate of generating effectively independent posterior samples. In addition to being computationally significant for this class of hierarchical models, this result underscores the potential for vast improvements to MCMC sampling efficiency which can result from combinations of known algorithms.  相似文献   

9.
Gauthier G  Besbeas P  Lebreton JD  Morgan BJ 《Ecology》2007,88(6):1420-1429
There are few analytic tools available to formally integrate information coming from population surveys and demographic studies. The Kalman filter is a procedure that facilitates such integration. Based on a state-space model, we can obtain a likelihood function for the survey data using a Kalman filter, which we may then combine with a likelihood for the demographic data. In this paper, we used this combined approach to analyze the population dynamics of a hunted species, the Greater Snow Goose (Chen caerulescens atlantica), and to examine the extent to which it can improve previous demographic population models. The state equation of the state-space model was a matrix population model with fecundity and regression parameters relating adult survival and harvest rate estimated in a previous capture-recapture study. The observation equation combined the output from this model with estimates from an annual spring photographic survey of the population. The maximum likelihood estimates of the regression parameters from the combined analysis differed little from the values of the original capture-recapture analysis, though their precision improved. The model output was found to be insensitive to a wide range of coefficient of variation (CV) in fecundity parameters. We found a close match between the surveyed and smoothed population size estimates generated by the Kalman filter over an 18-year period, and the estimated CV of the survey (0.078-0.150) was quite compatible with its assumed value (approximately 0.10). When we used the updated parameter values to predict future population size, the model underestimated the surveyed population size by 18% over a three-year period. However, this could be explained by a concurrent change in the survey method. We conclude that the Kalman filter is a promising approach to forecast population change because it incorporates survey information in a formal way compared with ad hoc approaches that either neglect this information or require some parameter or model tuning.  相似文献   

10.
Aquatic biogeochemical models are widely used as tools for understanding aquatic ecosystems and predicting their response to various stimuli (e.g., nutrient loading, toxic substances, climate change). Due to the complexity of these systems, such models are often elaborate and include a large number of estimated parameters. However, correspondingly large data sets are rarely available for calibration purposes, leading to models that may be overfit and possess reduced predictive capabilities. We apply, for the first time, information-theoretic model-selection techniques to a set of spatially explicit (1D) algal dynamics models of varying parameter dimension. We demonstrate that increases in complexity tend to produce a better model fit to calibration data, but beyond a certain degree of complexity the benefits of adding parameters are diminished (the risk of overfitting becomes greater). The particular approach taken here is computationally expensive, but several suggestions are made as to how multimodel methods may practically be extended to more sophisticated models.  相似文献   

11.
Estimating the age of individuals in wild populations can be of fundamental importance for answering ecological questions, modeling population demographics, and managing exploited or threatened species. Significant effort has been devoted to determining age through the use of growth annuli, secondary physical characteristics related to age, and growth models. Many species, however, either do not exhibit physical characteristics useful for independent age validation or are too rare to justify sacrificing a large number of individuals to establish the relationship between size and age. Length-at-age models are well represented in the fisheries and other wildlife management literature. Many of these models overlook variation in growth rates of individuals and consider growth parameters as population parameters. More recent models have taken advantage of hierarchical structuring of parameters and Bayesian inference methods to allow for variation among individuals as functions of environmental covariates or individual-specific random effects. Here, we describe hierarchical models in which growth curves vary as individual-specific stochastic processes, and we show how these models can be fit using capture-recapture data for animals of unknown age along with data for animals of known age. We combine these independent data sources in a Bayesian analysis, distinguishing natural variation (among and within individuals) from measurement error. We illustrate using data for African dwarf crocodiles, comparing von Bertalanffy and logistic growth models. The analysis provides the means of predicting crocodile age, given a single measurement of head length. The von Bertalanffy was much better supported than the logistic growth model and predicted that dwarf crocodiles grow from 19.4 cm total length at birth to 32.9 cm in the first year and 45.3 cm by the end of their second year. Based on the minimum size of females observed with hatchlings, reproductive maturity was estimated to be at nine years. These size benchmarks are believed to represent thresholds for important demographic parameters; improved estimates of age, therefore, will increase the precision of population projection models. The modeling approach that we present can be applied to other species and offers significant advantages when multiple sources of data are available and traditional aging techniques are not practical.  相似文献   

12.
I used source-sink population models to explore the consequences of habitat degradation for populations living on good and degraded habitats linked by movement. In particular, I modeled the conversion of land from good habitat quality supporting positive population growth to a degraded condition in which there was population decline. I found that with high rates of movement between good and bad quality areas populations require relatively large amounts of good habitat to remain stable. However, low movement rates resulted in greater sensitivity of population growth to habitat loss. Even small amounts of habitat degradation could result in rapid changes in overall population growth rates depending upon the rates of population increase and decline in the two habitat types. I also developed and simulated an age-structured model for grizzly bears ( Ursus arctos horribilis ) existing in good and degraded habitats and fit this model to data from the Yellowstone grizzly population. I used this model to predict the ability to detect crucial amounts of habitat degradation from census data and found that when degradation is slow (e.g., 1% conversion of good to poor habitat per year), more than a decade may pass between crucial amounts of degradation—beyond which populations begin long-term decline—and its detection, even if census data were unrealistically good. Thus these simple models indicate that, at least in some circumstances, habitat degradation can have rapid and severe impacts on population dynamics and traditional monitoring programs may not be adequate to detect the consequences of degradation.  相似文献   

13.
Bayesian methods incorporate prior knowledge into a statistical analysis. This prior knowledge is usually restricted to assumptions regarding the form of probability distributions of the parameters of interest, leaving their values to be determined mainly through the data. Here we show how a Bayesian approach can be applied to the problem of drawing inference regarding species abundance distributions and comparing diversity indices between sites. The classic log series and the lognormal models of relative- abundance distribution are apparently quite different in form. The first is a sampling distribution while the other is a model of abundance of the underlying population. Bayesian methods help unite these two models in a common framework. Markov chain Monte Carlo simulation can be used to fit both distributions as small hierarchical models with shared common assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not found in a sample, but suspected to be present in the region or community of interest, can be given zero abundance. This not only simplifies the process of model fitting, but also provides a convenient way of calculating confidence intervals for diversity indices. The method is especially useful when a comparison of species diversity between sites with different sample sizes is the key motivation behind the research. We illustrate the potential of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude that, once all assumptions have been made transparent, a single data set may provide support for the belief that diversity is negatively affected by anthropogenic forest disturbance. Bayesian methods help to apply theory regarding the distribution of abundance in ecological communities to applied conservation.  相似文献   

14.
Coral reefs are threatened ecosystems, so it is important to have predictive models of their dynamics. Most current models of coral reefs fall into two categories. The first is simple heuristic models which provide an abstract understanding of the possible behaviour of reefs in general, but do not describe real reefs. The second is complex simulations whose parameters are obtained from a range of sources such as literature estimates. We cannot estimate the parameters of these models from a single data set, and we have little idea of the uncertainty in their predictions.We have developed a compromise between these two extremes, which is complex enough to describe real reef data, but simple enough that we can estimate parameters for a specific reef from a time series. In previous work, we fitted this model to a long-term data set from Heron Island, Australia, using maximum likelihood methods. To evaluate predictions from this model, we need estimates of the uncertainty in our parameters. Here, we obtain such estimates using Bayesian Metropolis-Coupled Markov Chain Monte Carlo. We do this for versions of the model in which corals are aggregated into a single state variable (the three-state model), and in which corals are separated into four state variables (the six-state model), in order to determine the appropriate level of aggregation. We also estimate the posterior distribution of predicted trajectories in each case.In both cases, the fitted trajectories were close to the observed data, but we had doubts about the biological plausibility of some parameter estimates. We suggest that informative prior distributions incorporating expert knowledge may resolve this problem. In the six-state model, the posterior distribution of state frequencies after 40 years contained two divergent community types, one dominated by free space and soft corals, and one dominated by acroporid, pocilloporid, and massive corals. The three-state model predicts only a single community type. We conclude that the three-state model hides too much biological heterogeneity, but we need more data if we are to obtain reliable predictions from the six-state model. It is likely that there will be similarly large, but currently unevaluated, uncertainty in the predictions of other coral reef models, many of which are much more complex and harder to fit to real data.  相似文献   

15.
Inverse parameter estimation of individual-based models (IBMs) is a research area which is still in its infancy, in a context where conventional statistical methods are not well suited to confront this type of models with data. In this paper, we propose an original evolutionary algorithm which is designed for the calibration of complex IBMs, i.e. characterized by high stochasticity, parameter uncertainty and numerous non-linear interactions between parameters and model output. Our algorithm corresponds to a variant of the population-based incremental learning (PBIL) genetic algorithm, with a specific “optimal individual” operator. The method is presented in detail and applied to the individual-based model OSMOSE. The performance of the algorithm is evaluated and estimated parameters are compared with an independent manual calibration. The results show that automated and convergent methods for inverse parameter estimation are a significant improvement to existing ad hoc methods for the calibration of IBMs.  相似文献   

16.
A number of wildlife species including the grey partridge (Perdix perdix) have shown dramatic post-war population declines. Multiple drivers have been proposed as reasons for the declines, for example agrochemical use and intensification of agricultural practices, climate, predation, and changes in landscape structure. These drivers may interact in non-linear ways and are inherently spatio-temporal in nature. Therefore models used to investigate mechanisms should be spatio-temporal, of proper scale, and have a high degree of biological realism. Here we describe the development and testing of an agent-based model (ABM) of grey partridge using a well documented pre-decline historical data set in conjunction with a pattern-oriented modelling (POM) approach. Model development was an iterative process of defining performance criteria, testing model behaviour, and reformulating as necessary to emulate system properties whilst ensuring that internal mechanisms were biologically realistic. The model was documented using ODdox, a new protocol for describing large agent-based models. Parameter fitting in the model was achieved to within ±2% accuracy for 15 out of 17 field data patterns used, and within 5% for the remaining two. Tests of interactions between input parameters showed that 62% of parameter pairs tested had significant interactions underlining the complex nature of the model structure. Sensitivity analysis identified chick mortality as being the most sensitive factor, followed by adult losses to hunting and adult overwinter mortality, agreeing in general with previous partridge models. However, the ABM used here could separate individual drivers, providing a better understanding of the underlying mechanisms behind population regulation, and allowing factors to be compared directly. The ABM used is rich in output signals allowing detailed testing and refinement of the model. This approach is particularly suited to systems such as the partridge system where data for comparison to model outputs is readily available. Despite the accurate fit between historical data and model output, making use of the predictive power of the approach the model requires further calibration and testing under modern field conditions.  相似文献   

17.
This paper illustrates a method based on local likelihood (LL) for detecting disease clusters. The approach is based on estimating a lasso distance for each region: within which regions are considered to be clustered. An important advantage in implementing this approach is that it does not require any special Monte Carlo Markov Chain (MCMC) algorithm, e.g., reversible jump MCMC, which is essential in hidden Markov model approach. Another advantage is that extending the model to incorporate covariates is straightforward. We illustrate three ways of doing this by using Eastern Germany lip cancer data. By using simulated data, we have made a comparison with the BYM model [Besag et al. (1991) Annals of the Institute of Statistical Mathematics, 43, 1–59] and the mixture model [Lawson and Clark (2002) Disease Mapping and Risk Assessment for Public Health, Chapman and Hall]. We also did a limited examination of the ability of the LL model to recover true relative risk under different priors for lasso parameter. In order to check the edge effects, which has been overlooked in many spatial clustering models for disease mapping but deserves special attention as it lacks observable neighbors, we have adapted here a simple approach to observe the changes in relative risks when the edge regions are omitted. An erratum to this article is available at .  相似文献   

18.
Abstract:  Scalar population models, commonly referred to as count-based models, are based on time-series data of population sizes and may be useful for screening-level ecological risk assessments when data for more complex models are not available. Appropriate use of such models for management purposes, however, requires understanding inherent biases that may exist in these models. Through a series of simulations, which compared predictions of risk of decline of scalar and matrix-based models, we examined whether discrepancies may arise from different dynamics displayed due to age structure and generation time. We also examined scalar and matrix-based population models of 18 real populations for potential patterns of bias in population viability estimates. In the simulation study, precautionary bias (i.e., overestimating risks of decline) of scalar models increased as a function of generation time. Models of real populations showed poor fit between scalar and matrix-based models, with scalar models predicting significantly higher risks of decline on average. The strength of this bias was not correlated with generation time, suggesting that additional sources of bias may be masking this relationship. Scalar models can be useful for screening-level assessments, which should in general be precautionary, but the potential shortfalls of these models should be considered before using them as a basis for management decisions.  相似文献   

19.
Studying evolutionary mechanisms in natural populations often requires testing multifactorial scenarios of causality involving direct and indirect relationships among individual and environmental variables. It is also essential to account for the imperfect detection of individuals to provide unbiased demographic parameter estimates. To cope with these issues, we developed a new approach combining structural equation models with capture-recapture models (CR-SEM) that allows the investigation of competing hypotheses about individual and environmental variability observed in demographic parameters. We employ Markov chain Monte Carlo sampling in a Bayesian framework to (1) estimate model parameters, (2) implement a model selection procedure to evaluate competing hypotheses about causal mechanisms, and (3) assess the fit of models to data using posterior predictive checks. We illustrate the value of our approach using two case studies on wild bird populations. We first show that CR-SEM can be useful to quantify the action of selection on a set of phenotypic traits with an analysis of selection gradients on morphological traits in Common Blackbirds (Turdus merula). In a second case study on Blue Tits (Cyanistes caeruleus), we illustrate the use of CR-SEM to study evolutionary trade-offs in the wild, while accounting for varying environmental conditions.  相似文献   

20.
A Bayesian state-space formulation of dynamic occupancy models   总被引:1,自引:0,他引:1  
Royle JA  Kéry M 《Ecology》2007,88(7):1813-1823
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号