首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A vegetation mapping system for change detection was tested at the Havasu National Wildlife Refuge (HNWR) on the Lower Colorado River. A low-cost, aerial photomosaic of the 4200 ha, study area was constructed utilizing an automated digital camera system, supplemented with oblique photographs to aid in determining species composition and plant heights. Ground-truth plots showed high accuracy in distinguishing native cottonwood (Populus fremontii) and willow (Salix gooddingii) trees from other vegetation on aerial photos. Marsh vegetation (mainly cattails, Typha domengensis) was also easily identified. However, shrubby terrestrial vegetation, consisting of saltcedar (Tamarix ramosissima), arrowweed (Pluchea sericea), and mesquite trees (Prosopis spp.), could not be accurately distinguished from each other and were combined into a single shrub layer on the final vegetation map. The final map took the form of a base, shrub and marsh layer, which was displayed as a Normalized Difference Vegetation Index map from a Landsat Enhanced Thematic Mapper (ETM+) image to show vegetation intensity. Native willow and cottonwood trees were digitized manually on the photomosaic and overlain on the shrub layer in a GIS. By contrast to present, qualitative mapping systems used on the Lower Colorado River, this mapping system provides quantitative information that can be used for accurate change detection. However, better methods to distinguish between saltcedar, mesquite, and arrowweed are needed to map the shrub layer.  相似文献   

2.
Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis—[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.  相似文献   

3.
Natural color photographs were used to detect the coverage of saltcedar, Tamarix parviflora, along a 40 km portion of Cache Creek near Woodland, California. Historical aerial photographs from 2001 were retrospectively evaluated and compared with actual ground-based information to assess accuracy of the assessment process. The color aerial photos were sequentially digitized, georeferenced, classified using color and texture methods, and mosaiced into maps for field use. Eight types of ground cover (Tamarix, agricultural crops, roads, rocks, water bodies, evergreen trees, non-evergreen trees and shrubs (excluding Tamarix)) were selected from the digitized photos for separability analysis and supervised classification. Due to color similarities among the eight cover types, the average separability, based originally only on color, was very low. The separability was improved significantly through the inclusion of texture analysis. Six types of texture measures with various window sizes were evaluated. The best texture was used as an additional feature along with the color, for identifying Tamarix. A total of 29 color photographs were processed to detect Tamarix infestations using a combination of the original digital images and optimal texture features. It was found that the saltcedar covered a total of 3.96 km2 (396 hectares) within the study area. For the accuracy assessment, 95 classified samples from the resulting map were checked in the field with a global position system (GPS) unit to verify Tamarix presence. The producer's accuracy was 77.89%. In addition, 157 independently located ground sites containing saltcedar were compared with the classified maps, producing a user's accuracy of 71.33%.  相似文献   

4.
研究采用空气质量指数法对2014—2018年洛阳市大气污染变化特征进行了分析,构建了空气污染物浓度的影响指标体系,采用灰色关联法研究了空气污染物浓度与影响因子之间的关联度,得到了影响空气污染物浓度的主要指标因子,并提出了改善洛阳市空气质量的措施。结果表明:洛阳市空气质量指数类别主要为良和轻度污染。2014—2018年空气质量为优良的天数主要出现在春季、夏季和秋季,重度污染和严重污染主要出现在冬季。2018年PM10、PM2.5、NO2、SO2和CO这5项污染物浓度随时间变化呈"V"型,污染主要集中在1—5月和11—12月。O3浓度随时间变化呈倒"V"型,污染主要集中在4—9月。研究期内PM2.5、PM10和O3是主要污染物。市区总人口、工业(综合)能源消耗量、人均生产总值、城市机动车总数、城市房屋施工面积、人均公园绿地面积、建成区绿化覆盖率和一般工业固体废物产生量等8项指标因子与PM2.5、PM10和O3的浓度表现出高关联度或较高关联度。  相似文献   

5.
Data acquired from aerial laser scanner systems are increasingly used for detecting individual trees in operational inventories. In conventional analyses, tree detection is often performed on raster models that use local height maxima filters; an option that is likely to accumulate important errors. In order to reduce errors and improve the detection of individual trees, a new method is proposed that uses an Absolute Height Maxima (AHM) filter applied on the original point clouds obtained from Aerial Laser Scanning (ALS). ALS point clouds at a density of 2 to 4 points per square meter were acquired over forest stands in Hyrcanian forests. In the new method, false trees and commission errors were automatically found and excluded. To evaluate the efficiency of this new method, 121 sample trees in the field were located, with a DGPS and a mapping camera. The height and crown radius of the sample trees were also measured. The field-surveyed variables were compared to the closest detected tree, with an overall detection accuracy of 75.2%. The initial results of this analysis allowed us to hypothesize that a higher detection of tree may be expected with larger densities.  相似文献   

6.
Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2 = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2 = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.  相似文献   

7.
This study aimed at quantifying changes in urban area of the city of Kahramanmara? (K.Mara?) between 1948 and 2006, and analysing suitability of existing land use (LU) to the land potential. Urban change information was derived from two black-white monoscopic aerial photographs, and IKONOS and the QuickBird images acquired in 1948, 1985, 2000 and 2006, respectively. QuickBird image and soil map with 1:25,000 scale were used to analyze suitability of the current LU pattern to the land potential. The findings showed that the urban area of K.Mara? has expanded approximately 13 times during the past six decades. According to current LU and the soil map, productive and moderately productive soils were largely (73.2%) allocated for agricultural activities, which means that there was a strong consistency between the agricultural LU type and the land capability. However, widespread agriculture on the non-productive soils, and urbanization on the fertile agricultural lands were assessed as unsuitable from sustainable LU viewpoint. Considering this phenomenon, it is possible to say that rapid urban expansion has a growing pressure on the fertile agricultural soils. Monitoring LU changes, particularly urbanization, and developing effective LU plans based on the land capability were determined as the most important approaches to encourage sustainable use of land.  相似文献   

8.
Vegetation is commonly monitored to improve efficiency of various agricultural practices. Spatial and temporal changes in plant growth and development can be monitored with the aid of remote sensing techniques employing ground, aerial, and satellite platforms. Unmanned aerial vehicles (UAV) and multi-spectral cameras developed for UAVs have an important potential for agricultural management activities with high-resolution spatial and temporal images. However, UAV images should be assessed based on ground measurements for using these images as a decision-support tool in agriculture. This study was conducted to estimate sunflower leaf area index (LAI) and yield with the aid of Normalized Difference Vegetation Index (NDVI) images generated from raw UAV images. Furthermore, UAV-based NDVI values were compared with NDVI values calculated by using hyper-spectral measurements carried out with a ground-based spectroradiometer. Between July and August of 2017, six flight missions were conducted and spectral measurements were made simultaneously. A significant correlation (R2?=?0.77) was determined between NDVI values that belong to UAV platform and spectroradiometer. Also, regression models developed for sunflower LAI and yield estimation depending UAV-based NDVI have R2 values of 0.88 and 0.91, respectively.  相似文献   

9.
The susceptibility of residual, non-harvested, live trees to damage caused by the harvesting of other nearby trees has received moderate attention over the last four decades through observational studies prompted by concerns over ecological and economic consequences of logging operations. We developed models to predict the potential level of damage to residual trees that could be caused by selective timber harvesting. Three machine-learning methods, i.e., classification and regression tree (CART), random forest (RF), and boosted regression tree (BRT), were assessed for this purpose. Through an observational study of a harvested area in the Hyrcanian forests of Iran, we recorded damage to trees >7.5 cm diameter at breast height along transects and grouped them into three types: (1) scars >100 cm2, (2) >50% crown removal, and (3) trees leaning >10°. These field observations were associated with the spatially explicit characteristics of the forest stand, i.e., slope angle, slope aspect, altitude, slope length, topographic position index, stand type, stand density, and distance from the nearest roads and skid trails, that were considered as the explanatory variables to the modeling processes. To determine whether the CART, RF, and BRT models performed well in estimating the probability of damage occurrence, they were validated using the Akaike information criterion (AIC) and area under the receiver operating characteristics (AUC) curve. The results revealed that the BRT model with AIC = −276 and AUC = 0.89 generated the most accurate spatially explicit distribution map of stand susceptibility to damage from logging operations, followed by RF (AIC = −263 and AUC = 0.87) and CART (AIC = −23 and AUC = 0.62). We found that the spatial extent of residual stand damage was highly influenced by slope terrain and stand density. Our study has practical implications for reorganizing and planning reduced-impact logging operations and provides forest engineers with insights into the utility of machine learning methods in domains of forestry and forest engineering.  相似文献   

10.
Spatiotemporal shifts in the extent and distribution of alpine wetland ecosystems in China's Qinghai-Tibet plateau were investigated for the period 1967-2004. Using aerial photographs for 1967, and satellite remote sensing data for 1986, 2000, and 2004/5, the main components and distribution of alpine wetland ecosystems in the headwaters regions of the Yangtze and Yellow Rivers, as well as those of the nearby Zoige region, were analyzed. Widespread degradation of the Qinghai-Tibet plateau's alpine wetlands occurred between 1967 and 2004, with over 10% of their area being lost. The greatest such degradation occurred in the headwaters region of Yangtze River, where wetland areas shrank by 29%, and the area of dried-up lakes rose by 17.5%. In the Yellow River's headwaters region as well as the Zoige region, wetland ecosystems clearly underwent accelerated fragmentation and isolation in their spatial distribution. The wetlands' degradation was closely correlated to the rise in air temperature, which from 1982-2004 was over 2-fold faster that from 1965-1982.  相似文献   

11.
The European legislation on ambient air quality introduces the concepts of spatial representativeness of a monitoring station and spatial extent of an exceedance zone. Spatial representativeness is an essential macro-scale siting criterion which should be evaluated before the setting-up and during the life of a monitoring point. As for the exceedance area, it has to be defined each time an environmental objective is exceeded in an assessment zone. No specific approach is prescribed to delimit such areas. A probabilistic methodology is presented, based on a preliminary kriging estimation of atmospheric concentrations at each point of the domain. It is applied to NO2 pollution on the urban scale. In the proposed approach, a point belongs to the area of representativeness of a station if its concentration differs from the station measurement by less than a given threshold. To take the estimation uncertainty into account, the standard deviation of the kriging error is used in a probabilistic framework. The choice of the criteria used to deal with overlapping areas is first tested on NO2 annual mean concentration maps of France, built by combining surface monitoring observations and outputs from the CHIMERE chemistry transport model. At the local scale, data from passive sampling surveys and high -resolution auxiliary variables are used to provide a more precise estimation of the background pollution in different French cities. The traffic-related pollution can also be accounted for in the map by additional predictors such as distance to the road, and traffic-related NOx emissions. Similarly, the proposed approach is implemented to identify the points, at a given statistical risk, where the NO2 concentration is above the annual limit value.  相似文献   

12.
This study compared performance of four change detection algorithms with six vegetation indices derived from pre- and post-Katrina Landsat Thematic Mapper (TM) imagery and a composite of the TM bands 4, 5, and 3 in order to select an optimal remote sensing technique for identifying forestlands disturbed by Hurricane Katrina. The algorithms included univariate image differencing (UID), selective principal component analysis (PCA), change vector analysis (CVA), and postclassification comparison (PCC). The indices consisted of near-infrared to red ratios, normalized difference vegetation index, Tasseled Cap index of greenness, brightness, and wetness (TCW), and soil-adjusted vegetation index. In addition to the satellite imagery, the “ground truth” data of forest damage were also collected through field investigation and interpretation of post-Katrina aerial photos. Disturbed forests were identified by classifying the composite and the continuous change imagery with the supervised classification method. Results showed that the change detection techniques exerted apparent influence on detection results with an overall accuracy varying between 51% and 86% and a kappa statistics ranging from 0.02 to 0.72. Detected areas of disturbed forestlands were noticeable in two groups: 180,832–264,617 and 85,861–124,205 ha. The landscape of disturbed forests also displayed two unique patterns, depending upon the area group. The PCC algorithm along with the composite image contributed the highest accuracy and lowest error (0.5%) in estimating areas of disturbed forestlands. Both UID and CVA performed similarly, but caution should be taken when using selective PCA in detecting hurricane disturbance to forests. Among the six indices, TCW outperformed the other indices owing to its maximum sensitivity to forest modification. This study suggested that compared with the detection algorithms, proper selection of vegetation indices was more critical for obtaining satisfactory results.  相似文献   

13.
Urban areas are continuously expanding today, extending their influence on an increasingly large proportion of woods and trees located in or nearby urban and urbanizing areas, the so-called urban forests. Although these forests have the potential for significantly improving the quality the urban environment and the well-being of the urban population, data to quantify the extent and characteristics of urban forests are still lacking or fragmentary on a large scale. In this regard, an expansion of the domain of multipurpose forest inventories like National Forest Inventories (NFIs) towards urban forests would be required. To this end, it would be convenient to exploit the same sampling scheme applied in NFIs to assess the basic features of urban forests. This paper considers approximately unbiased estimators of abundance and coverage of urban forests, together with estimators of the corresponding variances, which can be achieved from the first phase of most large-scale forest inventories. A simulation study is carried out in order to check the performance of the considered estimators under various situations involving the spatial distribution of the urban forests over the study area. An application is worked out on the data from the Italian NFI.  相似文献   

14.
Various natural hazards such as landslides, avalanches, floods and debris flows can result in enormous property damages and human casualties in Eastern Black Sea region of Turkey. Mountainous topographic character and high frequency of heavy rain are the main factors for landslide occurrence in Ardesen, Rize. For this reason, the main target of the present study is to evaluate the landslide hazards using a sequence of historical aerial photographs in Ardesen (Rize), Turkey, by Photogrammetry and Geographical Information System (GIS). Landslide locations in the study area were identified by interpretation of aerial photographs dated in 1973 and 2002, and by field surveys. In the study, the selected factors conditioning landslides are lithology, slope gradient, slope aspect, vegetation cover, land class, climate, rainfall and proximity to roads. These factors were considered as effective on the occurrence of landslides. The areas under landslide threat were analyzed and mapped considering the landslide conditioning factors. Some of the conditioning factors were investigated and estimated by employing visual interpretation of aerial photos and topographic data. The results showed that the slope, lithology, terrain roughness, proximity to roads, and the cover type played important roles on landslide occurrence. The results also showed that degree of landslides was affected by the number of houses constructed in the region. As a consequence, the method employed in the study provides important benefits for landslide hazard mitigation efforts, because a combination of both photogrammetric techniques and GIS is presented.  相似文献   

15.
Recognition and understanding of landscape dynamics as a historical legacy of disturbances are necessary for sustainable management of forest ecosystems. This study analyzed spatial and temporal changes in land use and land cover patterns in a typical mountain watershed in the Gumushane district along the Northeastern part of Turkey. The area is investigated by comparing LANDSAT images from 1987 to 2000 and evaluated the temporal changes of spatial structure of forest conditions through spatial analysis of forest cover type maps from 1971 and 1987 using GIS and FRAGSTATS™. The results show a general decreasing trend in area of natural land cover types including broadleaf and conifer forests as well as coppice between 1971 and 1987 (0.54%, respectively). In contrast, between 1987 and 2000 this natural land cover types show increasing trend (1.6%). In parallel with forest dynamics, the area of managed land including lowland and upland agricultural areas, rangelands and grasslands increased during the first period and decreased during second period. In terms of spatial configuration, Gümüşhane forests aren’t generally fragmented by intensive forest utilization in the latter periods. This is partially due to out-migration of rural population in Gümüşhane. Nevertheless, land use pattern significantly changed over time depending on a few factors such as unregulated management actions, social pressure and demographic movements. The study revealed that demographic movements have a major effect on landscape dynamics.  相似文献   

16.
李磊  李艳红 《干旱环境监测》2013,(4):154-159,183
选取艾比湖流域1990年、2001年、2011年同期(9月)3期I.and.satTM遥感影像,基于归一化植被指数NDVI,提取植被覆盖等级图,利用ArcGIS9.3和Fragstas3.3对该流域植被景观的变化进行了分析研究。结果表明:1990—2011年,该流域植被覆盖度变化明显,低植被覆盖区和较低植被覆盖区都有所减少,分别由1990年的34.05%和32.94%减少到2011年的32.8%和24.06%;较高植被覆盖区和高植被覆盖区有所增加,分别由8.49%和5.20%增长到15.13%和9.83%,但水域面积退化明显,由1990年的525.9765km2缩小至494.9876km2,减少了30.9889km2,退缩幅度达O.4%;最大斑块指数(LPI)由17.04上升到21.10,香农多样性指数(SHDI)和香农均势度指数(SHEI)分别由1.5387和0.8588增长到1.6395和0.9150。表明艾比湖流域景观格局混杂程度愈来愈高,空间异质性在逐年加强,总体空间格局向破碎化趋势发展。  相似文献   

17.
基于环渤海地区2017—2021年各城市空气质量指数(AQI)、污染物浓度与社会经济数据,利用数理统计、克里金插值法对环渤海地区AQI与污染物浓度的时空变化特征进行分析,运用皮尔逊相关性分析方法探讨AQI与污染物浓度、社会经济因素的相关关系,采用时间序列预测模型对2022年6月—2023年12月空气质量及污染物浓度进行预测。结果表明:环渤海地区AQI及污染物浓度大致呈逐年降低的趋势。AQI的逐月变化呈"W"形,O3浓度的年内变化呈倒"V"形,其余污染物则呈现与O3相反的变化趋势。AQI大致呈现西南高、东北低的空间分布特点,而污染物浓度分布具有明显的空间差异。环渤海地区5个代表性城市的AQI类别以良好为主,冬季首要污染物主要为PM2.5、PM10,夏季首要污染物以O3为主。人口数量是影响AQI的主要因素,城市园林绿地面积对AQI具有一定影响。预测结果显示,未来环渤海地区AQI、主要污染物浓度(O3除外)均呈现出随时间的推移逐渐下降的变化趋势。  相似文献   

18.
The air temperature distributions in August (summer) and December (winter) were measured in an approximately 15 × 15-km urban area in Hyogo Prefecture, Japan, in order to study the spatial distribution of the air temperature and to propose effective measures against the heat island phenomenon. The air temperature was measured mainly by using thermometer shelters installed in an elementary school and a junior high school. The characteristic air temperature distribution depended on the season. The air temperature was higher inland than in the coastal region in August but was higher in the coastal region in December. The air temperature index indicated that the area where higher air temperatures would most likely appear was 5 to 10 km inland from the coast in August and around the coast in December. The seasonal air temperature distribution was presumably due to the strength of solar radiation and anthropogenic exhaust heat.  相似文献   

19.
Because of their intense vegetation and the fact that they include areas of coastline, deltas situated in the vicinity of big cities are areas of great attraction for people who wish to get away from in a crowded city. However, coasts, with their fertile soil and unique flora and fauna, need to be protected. In order for the use of such areas to be planned in a sustainable way by local authorities, there is a need for detailed data about these regions. In this study, the changes in land use of the area between Topburnu and Uçburun Musa Bey Harbour on the Çe?me peninsula, which is to the immediate west of Turkey’s third largest city ?zmir, from 1976 up to the present day, were investigated. In the study, using aerial photographs taken in 1976, 1995 and 2000 and an IKONOS satellite image from the year 2007, the natural and cultural characteristics of the region and changes in the coastline were determined spatially. Using aerial photographs from 1976, 1995 and 2000 and an IKONOS satellite image from the year 2007, together with “1/25,000 scale Conservation-Oriented Development Plans” prepared in 1979, 1990 and 2000 by the committee for the Preservation of Natural and Cultural Entities attached to the Ministry of Culture and Tourism of the Turkish Republic, the natural and cultural characteristics of the region and the land use changes and their connection with conservation rulings were determined spatially. In this study, spatial changes in land use over the years were compared with changing conservation rulings over the years and the emerging results have brought a new perspective to the subject in contrast to other similar studies.  相似文献   

20.
Zhalong National Nature Reserve in the northeast of China is a large wetland and a habitat of hundreds species of fauna and flora. The rare red-crowned crane is one kind of endangered birds in it. Recently, Zhalong wetland is shrinking and it encounters many problems including occasional fires, bad water quality, human activities, etc. In order to find out a proper way to protect and restore the wetland, this study, using a geographic information system, the global positioning system and remote sensing techniques, analyses the spatial characteristics of the changes in marsh landscape pattern and examines the driving factors for these changes. Data sources include 8 Landsat Thematic Mapper satellite images of Zhalong area in the period of 1986–2002 and the investigation information on site. Based on the analysis of changes of marsh area and annual precipitation during the 16 years, it is found that there is a close correlation between annual precipitation and marsh area. It means that climate is one of driving factors of marsh pattern changes. To understand influences of other kinds of land uses on marsh spatial distribution in Zhalong wetland, this paper analyses the relationship between marsh and different kinds of land uses, such as water surface, residential area, farmland, salina land and grass land, respectively. According to the patch analysis theory, a fragmental index and a fractal dimension of the marsh are calculated with perimeter-area method. The results indicate that the marsh pattern is affected by human activities significantly. In addition, the location alteration of marsh centroid point over the 16 years is studied. The movement trace of marsh centroid point is concerned with different hydrological situation in different areas of the wetland. In summary the characteristics of the marsh landscape pattern evolution during the 16 years are affected by multiple driving factors. The main driving factors are climate, human activities, distribution of other kinds of land uses and hydrological situation in different areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号