首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   

2.
Cost-effective control of SO2 emissions in Asia   总被引:2,自引:0,他引:2  
Despite recent efforts to limit the growth of SO(2) emissions in Asia, the negative environmental effects of sulphur emissions are likely to further increase in the future. This paper presents an extension of the RAINS-Asia integrated assessment model for acidification in Asia with an optimisation routine that can be used to identify cost-effective emission control strategies that achieve environmental targets for ambient SO(2) concentrations and sulphur deposition at least costs. Example scenarios developed with this optimisation module demonstrate a potential for significant cost savings in Asia, if emission controls are allocated to those sources that have the largest environmental impact and are cheapest to control. It is shown that strategies that simultaneously address harmful population exposure and the risk of vegetation damage from acid deposition result in the most cost-effective use of resources spent for emission controls.  相似文献   

3.
The growing demand for cooling throughout the world, possibly increased by global climate change, requires the implementation of policies to mitigate the related greenhouse gas (GHG) emissions from energy and refrigerant use in the refrigeration and air conditioning (RAC) sector. This article aims to contribute to the discussion on strategies to reduce HFC emissions from RAC by looking at their different temporal effects, caused by stock-flow dynamics. From scenario modeling, we find that containment strategies are often most effective in reducing HFC emissions in the short run, whereas phase out strategies have more potential in the long run. Further findings suggest that early and quick implementation of phase out strategies could lead to important reductions in cumulative HFC emissions, because stock build up is prevented. This timing effect is less pronounced for containment strategies. Lastly, emissions from disposal, if unabated, can lead to equally large emissions annually as those from use. Preference for several short-term benefits of containment strategies might lead to sub optimal emission reduction strategies, endangering long term GHG emission reduction.  相似文献   

4.
Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential environmental costs. The health risks costs are associated with the residual contamination left at the site and its migration to groundwater used for drinking water. A probabilistic exposure model using first- and second-order reliability methods (FORM/SORM) is used to estimate the contaminant concentrations at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model.A case study based upon the developed methodology is presented in which the following remediation scenarios are analyzed and compared: (a) no action, (b) excavation and off-site treatment of soil, (c) soil vapor extraction and (d) thermally enhanced soil vapor extraction by electrical heating of the soil. Ultimately, the developed methodology facilitates societal cost estimations of remediation scenarios which can be used for internal ranking of the analyzed options. Despite the inherent uncertainties of placing a value on health and environmental impacts, the presented methodology is believed to be valuable in supporting decisions on remedial interventions.  相似文献   

5.
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts. While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns. This requires a holistic and system-wide environmental assessment rather than focusing on the greenhouse gases only. Life Cycle Assessment meets this criteria as it not only tracks energy and non-energy-related greenhouse gas releases but also tracks various other environmental releases, such as solid wastes, toxic substances and common air pollutants, as well as the consumption of other resources, such as water, minerals and land use. This paper presents the principles of the CO2 capture and storage LCA model developed at Imperial College and uses the pulverised coal post-combustion capture example to demonstrate the methodology in detail. At first, the LCA models developed for the coal combustion system and the chemical absorption CO2 capture system are presented together with examples of relevant model applications. Next, the two models are applied to a plant with post-combustion CO2 capture, in order to compare the life cycle environmental performance of systems with and without CO2 capture. The LCA results for the alternative post-combustion CO2 capture methods (including MEA, K+/PZ, and KS-1) have shown that, compared to plants without capture, the alternative CO2 capture methods can achieve approximately 80% reduction in global warming potential without a significant increase in other life cycle impact categories. The results have also shown that, of all the solvent options modelled, KS-1 performed the best in most impact categories.  相似文献   

6.
Mandatory insurance requirements and/or mitigation fees (royalties) for mining companies may help reduce environmental risk exposure for the federal government. Mining is examined since the Environmental Protection Agency (EPA) Toxic Release Inventory reveals that this sector produces more hazardous waste than any other industrial sector. Although uncommon, environmental expense can exceed hundreds of millions of dollars per development. Of particular concern is the potential for mines to become unfunded Superfund sites. Monte Carlo simulation of risk exposure is used to establish a plausible range of unfunded federal liabilities associated with cyanide-leach gold mining. A model is developed to assess these costs and their impact on both the federal budget and corporate profitability (i.e., industry sustainability), particularly if such costs are borne by offending firms.  相似文献   

7.
This paper summarizes the spectrum of options that can be employed during the initial design and construction of pulverized coal (PC), and integrated gasification and combined cycle (IGCC) plants to reduce the capital costs and energy losses associated with retrofitting for CO2 capture at some later time in the future. It also estimates lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO2 capture under a wide range of CO2 price scenarios. Three scenarios are evaluated—a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. This analysis evaluates each technology option under a range of CO2 price scenarios and determines the optimum year of retrofit, if any. The results of the analysis show that a baseline PC plant is the most economical choice under low CO2 prices, and IGCC plants are preferable at higher CO2 prices (e.g., an initial price of about $22/t CO2 starting in 2015 and growing at 2%/year). Little difference is seen in the lifetime NPV costs between the IGCC plants with and without pre-investment for CO2 capture. This paper also examines the impact of technology choice on lifetime CO2 emissions. The difference in lifetime emissions become significant only under mid-estimate CO2 price scenarios (roughly between $20 and 40/t CO2) where IGCC plants will retrofit sooner than a PC plant.  相似文献   

8.
An Eco-balance of a Recycling Plant for Spent Lead–Acid Batteries   总被引:2,自引:0,他引:2  
This study applies Life Cycle Assessment (LCA) methodology to present an eco-balance of a recycling plant that treats spent lead–acid batteries. The recycling plant uses pyrometallurgical treatment to obtain lead from spent batteries. The application of LCA methodology (ISO 14040 series) enabled us to assess the potential environmental impacts arising from the recycling plants operations. Thus, net emissions of greenhouse gases as well as other major environmental consequences were examined and hot spots inside the recycling plant were identified. A sensitivity analysis was also performed on certain variables to evaluate their effect on the LCA study. The LCA of a recycling plant for spent lead–acid batteries presented shows that this methodology allows all of the major environmental consequences associated with lead recycling using the pyrometallurgical process to be examined. The study highlights areas in which environmental improvements are easily achievable by a business, providing a basis for suggestions to minimize the environmental impact of its production phases, improving process and company performance in environmental terms.  相似文献   

9.
Waste management strategies in mining projects will depend to a large extent on the characteristics of the operational process, the type of ore and prevailing socio-environmental conditions, amongst other issues. The expenditures required by the management scheme and the implementation of remediation programs will be determined by the extent that the above issues were considered in the planning phase of the project. Several works have been published in the literature concerning the analysis of waste management programs and environmental impacts associated with uranium projects around the world. However, the vast majority do not report a comprehensive assessment integrating the various relationships among operational process, environmental impact, remediation strategy and costs. This study, divided into two papers, presents a detailed critical analysis of the waste management strategies adopted in two uranium production centres in Brazil, i.e., the Poços de Caldas Project (Part I) and the Caetité Project (Part II). The operational processes are described and the environmental impacts of the generated wastes as well as the adopted management strategies and costs are examined. Also, in Part II, a comparison between both production centres is made emphasizing the impacts of environmental and social-economical issues on the overall assessment.  相似文献   

10.
Attempts to mitigate greenhouse gas emissions or manage the effects of climate change traditionally focus on management or policy options that promote single outcomes (e.g., either benefiting ecosystems or human health and well-being). In contrast, co-benefits approaches to climate change mitigation and adaptation address climate change impacts on human and ecological health in tandem and on a variety of spatial and temporal scales. The article engages the concept of co-benefits through four case studies. The case studies emphasize co-benefits approaches that are accessible and tractable in countries with human populations that are particularly vulnerable to climate change impacts. They illustrate the potential of co-benefits approaches and provide a platform for further discussion of several interdependent principles relevant to the implementation of co-benefits strategies. These principles include providing incentives across multiple scales and time frames, promoting long-term integrated impact assessment, and fostering multidimensional communication networks.  相似文献   

11.
食物生产不仅依赖水资源,同时产生大量二氧化碳排放,这种资源环境影响存在于食物系统整个产业链。为促进食物系统节水降碳,本文构建了包含5大类共23种具体食物部门的混合生命周期评价模型,对各类食物系统的完全水资源消耗和二氧化碳排放进行了核算与比较。结果表明:①不同食物的水资源消耗和二氧化碳排放差异明显,动物性食物的平均水资源消耗和二氧化碳排放强度分别为植物性食物的1.9 ~ 15.0倍和1.9 ~ 2.7倍;②食物系统直接和间接水资源消耗占比较为接近,但二氧化碳排放主要源自上游产业链的间接排放,占比高达80.9%;③食物系统间接水资源消耗主要来自农业部门,而间接碳排放主要来自电力生产和供应业、基础化工原料制造业、非金属矿产品行业和交通运输业;④从营养元素供给看,动物性食物提供蛋白质和脂肪的资源环境影响高于植物性食物,蔬菜和主食分别在提供维生素C和碳水化合物上具有最小的环境成本。基于本文结果,食物系统节水应主要提高生产环节用水效率,而降碳则主要依靠上游产业减排,特别是发电和化肥生产等行业的协同节水减碳潜力。同时,本文结果也可为未来基于环境影响制定膳食指南提供数据支撑。  相似文献   

12.

As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options. The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO2 emissions in 1996–1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO2 emissions for the year 2000 is 3% of the CO2 emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%–6% of the 1990 level.

  相似文献   

13.
An evaluation of the economic and environmental costs and benefits that would result if the Zorinsky Federal Building, located in Omaha, Nebraska, USA, converted its current lighting system to a more energy-efficient system (i.e., joined the EPA's Green Lights Program) was conducted. Lighting accounts for 20–25 percent of all electricity sold in the United States. Costs considered in the study included the cost of retrofitting the building's existing lighting system and the cost of disposal of the current lamps and ballast fixtures. Benefits included a reduction of electric utility costs and a reduction of emissions of SO2, NO x , CO2, and CO from electric utility power plants. Environmental and health issues for air pollutant emissions were also addressed. The results showed that significant reductions in utility bills as well as reductions in air emissions would result from a major building converting to a more energy efficient lighting system. The results showed that conversion of this large building would reduce SO2 emissions by 14.6 tons/yr and NO x emissions by 6.3 tons/yr. In addition, the conversion would reduce annual energy costs by approximately $114,000.  相似文献   

14.
This study assesses potential environmental impacts of the absorption-based carbon dioxide (CO2) capture unit that is integrated to coal-fired power plant for post-combustion treatment of flue gas. The assessment was performed by identifying potential pollutants and their sources as well as amounts of emissions from the CO2 capture unit and also by reviewing toxicology, potential implications to human health and the environment, as well as the environmental laws and regulations associated with such pollutants. The assessment shows that, while offering a significant environmental benefit through a reduction of greenhouse gas emissions, the installation of CO2 capture units for post-combustion treatment might induce unintentional and potential burdens to human health and the environment through four emission pathways, including treated gas, process wastes, fugitive emissions, and accidental releases. Such burdens nevertheless can be predetermined and properly mitigated through a well-established environmental management program and mitigation measures. Recommendations to minimize these impacts are provided in this paper.  相似文献   

15.
Life cycle assessment (LCA) was applied to analyze a food-processing wastewater treatment plant and investigate the economic and environmental effects of the plant. With the long-term operational data of this plant, an inventory of relative inputs, e.g., flow rate, chemical oxygen demand (COD), and suspended solids, etc., and outputs of the plant, e.g., effluent COD and suspended solids, methane production, etc., was compiled. The potential environmental effects associated with those inputs and outputs were evaluated, and the results of the inventory analysis and impact assessment phases of the plant were interpreted. One feature of this study was the assessment of the treatment plant based on both energy and material flows. Another feature was the establishment of an assessment model with an integration of plant operating parameters, system recognition and grey relation. The analytical results are helpful for the design and operation of wastewater treatment plants.  相似文献   

16.
A framework is presented showing the process of integrated resource planning in the electric power sector. This takes into account the traditional utility planning process, and shows how the use of advanced decision analysis tools would facilitate the integration of demand-side management (DSM) and environmental factors. The concept of influence diagram is introduced in the utility planning arena. Using the interdependent data analysis (IDA) technique, a way is shown to provide the probability estimates necessary for the influence diagram. The IDA technique allows the use of expert opinions and intuitive judgements to develop the necessary probability estimates. A sample case study is presented where the issue of environmental impact from stack emissions is incorporated. A base case coal option is compared against a gas turbine combined cycle (GTCC) alternative. Energy costs from these two options are compared by taking into account the capital, licensing, fuel, operation and maintenance, and emissions related costs.  相似文献   

17.
Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production.Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions.Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement.  相似文献   

18.
This study explores potential adaptation approaches in planning and management that the United States Forest Service might adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-climatic changes, influence selection of the adaptation approach. Resource assessments are opportunities to develop strategic information that could be used to identify and link adaptation strategies across planning levels. Within a National Forest, planning must incorporate the opportunity to identify vulnerabilities to climate change as well as incorporate approaches that allow management adjustments as the effects of climate change become apparent. The nature of environmental variability, the inevitability of novelty and surprise, and the range of management objectives and situations across the National Forest System implies that no single approach will fit all situations. A toolbox of management options would include practices focused on forestalling climate change effects by building resistance and resilience into current ecosystems, and on managing for change by enabling plants, animals, and ecosystems to adapt to climate change. Better and more widespread implementation of already known practices that reduce the impact of existing stressors represents an important “no regrets” strategy. These management opportunities will require agency consideration of its adaptive capacity, and ways to overcome potential barriers to these adaptation options.  相似文献   

19.
A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO2 emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO2 emissions to a specified limit.  相似文献   

20.
The contribution of chlorinated hydrocarbons (CHCs) to environmental problems in the Netherlands is discussed in an economic context. The economic interactions within the chlorine market, including the link to caustic soda production, are described, and PVC is taken as a case study. Key policy options are evaluated in terms of their potential for environmental improvement. It appears that 95% of CHC emissions causing environmental problems are due to dissipative applications. With respect to the specific problems of ozone depletion and global warming, only a small group of compounds is responsible for most of the impact. Moreover, economic interactions within the group of CHCs can strongly influence the net effect of environmental policy measures. Policies aimed at a reducing volume output of certain specific groups of CHCs will inevitably lead to trade-offs between environmental problems. The environmental impact of a hypothetical ban on CHCs is discussed in relation to the use of PVC as a sink for chlorine. Both these options appear to have drawbacks. Moreover, no absolute conclusion can be drawn until the environmental impact of CHC substitutes is known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号