首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide emissions have accelerated since the signing of the Kyoto Protocol. This discouraging development may partly be blamed on accelerating world growth and on lags in policy instruments. However, it also raises serious question concerning whether policies to reduce CO2 emissions are as effective as generally assumed. In recent years, a considerable number of studies have identified various feedback mechanisms of climate policies that often erode, and occasionally reinforce, their effectiveness. These studies generally focus on a few feedback mechanisms at a time, without capturing the entire effect. Partial accounting of policy feedbacks is common in many climate scenarios. The IPCC, for example, only accounts for direct leakage and rebound effects. This article attempts to map the aggregate effects of different types of climate policy feedback mechanisms in a cohesive framework. Controlling feedback effects is essential if the policy measures are to make any difference on a global level. A general conclusion is that aggregate policy feedback mechanisms tend to make current climate policies much less effective than is generally assumed. In fact, various policy measures involve a definite risk of ‘backfiring’ and actually increasing CO2 emissions. This risk is particularly pronounced once effects of climate policies on the pace of innovation in climate technology are considered. To stand any chance of controlling carbon emissions, it is imperative that feedback mechanisms are integrated into emission scenarios, targets for emission reduction and implementation of climate policy. In many cases, this will reduce the scope for subsidies to renewable energy sources, but increase the scope for other measures such as schemes to return carbon dioxide to the ground and to mitigate emissions of greenhouse gases from wetlands and oceans. A framework that incorporates policy feedback effects necessitates rethinking the design of the national and regional emission targets. This leads us to a new way of formulating emission targets that include feedback effects, the global impact target. Once the full climate policy feedback mechanisms are accounted for, there are probably only three main routes in climate policy that stand a chance of mitigating global warming: (a) returning carbon to the ground, (b) technological leaps in zero-emission energy technology that make it profitable to leave much carbon in the ground even in Annex II countries and (c) international agreements that make it more profitable to leave carbon in the ground or in forests.  相似文献   

2.
Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.  相似文献   

3.
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.  相似文献   

4.
Vegetation change has consequences for terrestrial ecosystem structure and functioning and may involve climate feedbacks. Hence, when monitoring ecosystem states and changes thereof, the vegetation is often a primary monitoring target. Here, we summarize current understanding of vegetation change in the High Arctic—the World’s most rapidly warming region—in the context of ecosystem monitoring. To foster development of deployable monitoring strategies, we categorize different kinds of drivers (disturbances or stresses) of vegetation change either as pulse (i.e. drivers that occur as sudden and short events, though their effects may be long lasting) or press (i.e. drivers where change in conditions remains in place for a prolonged period, or slowly increases in pressure). To account for the great heterogeneity in vegetation responses to climate change and other drivers, we stress the need for increased use of ecosystem-specific conceptual models to guide monitoring and ecological studies in the Arctic. We discuss a conceptual model with three hypothesized alternative vegetation states characterized by mosses, herbaceous plants, and bare ground patches, respectively. We use moss-graminoid tundra of Svalbard as a case study to discuss the documented and potential impacts of different drivers on the possible transitions between those states. Our current understanding points to likely additive effects of herbivores and a warming climate, driving this ecosystem from a moss-dominated state with cool soils, shallow active layer and slow nutrient cycling to an ecosystem with warmer soil, deeper permafrost thaw, and faster nutrient cycling. Herbaceous-dominated vegetation and (patchy) bare ground would present two states in response to those drivers. Conceptual models are an operational tool to focus monitoring efforts towards management needs and identify the most pressing scientific questions. We promote greater use of conceptual models in conjunction with a state-and-transition framework in monitoring to ensure fit for purpose approaches. Defined expectations of the focal systems’ responses to different drivers also facilitate linking local and regional monitoring efforts to international initiatives, such as the Circumpolar Biodiversity Monitoring Program.  相似文献   

5.
Uncertainties and recommendations   总被引:1,自引:0,他引:1  
An assessment of the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, made within the Arctic Climate Impacts Assessment (ACIA), highlighted the profound implications of projected warming in particular for future ecosystem services, biodiversity and feedbacks to climate. However, although our current understanding of ecological processes and changes driven by climate and UV-B is strong in some geographical areas and in some disciplines, it is weak in others. Even though recently the strength of our predictions has increased dramatically with increased research effort in the Arctic and the introduction of new technologies, our current understanding is still constrained by various uncertainties. The assessment is based on a range of approaches that each have uncertainties, and on data sets that are often far from complete. Uncertainties arise from methodologies and conceptual frameworks, from unpredictable surprises, from lack of validation of models, and from the use of particular scenarios, rather than predictions, of future greenhouse gas emissions and climates. Recommendations to reduce the uncertainties are wide-ranging and relate to all disciplines within the assessment. However, a repeated theme is the critical importance of achieving an adequate spatial and long-term coverage of experiments, observations and monitoring of environmental changes and their impacts throughout the sparsely populated and remote region that is the Arctic.  相似文献   

6.
Chapin FS  Danell K  Elmqvist T  Folke C  Fresco N 《Ambio》2007,36(7):528-533
Projected warming in Sweden and other Fennoscandian countries will probably increase growth rates of forest trees near their northern limits, increase the probability of new pest outbreaks, and foster northerly migration of both native and exotic species. The greatest challenges for sustainable forestry are to restore and enhance the ecological and socioeconomic diversity of intensively managed forested landscapes. With appropriate management, climate warming may facilitate the regeneration of this diversity. Experimental transplant gardens along latitudinal or altitudinal gradients and high-resolution maps of expected future climate could provide a scientific basis for predicting the climate response of potential migrant species. Management of corridors and assisted migration could speed the movement of appropriate species.  相似文献   

7.
In the present work, a box model is applied to estimate the direct climate forcing of aerosol particles for rural air in Central Europe during summertime. In the model, the input parameters reflect regional character: data from satellite observations and other surface measurements are used referring to the selected area, Hungary. In the calculation of direct climate forcing of aerosol particles satellite observations serve as the source of incoming solar radiation intensity data and cloudiness, while different aerosol parameters of the model (mass extinction coefficient, chemical composition, scale height, hygroscopic growth factor, etc.) are based on local measurements. Finally, surface albedo of the area studied was determined on the basis of vegetation cover and precipitation amount. As the summary of our calculations, in Central Europe direct climate forcing of ammonium sulfate is equal to –2.4 W m−2. The climate forcing of total carbon is composed of two terms. The forcings due to scattering and absorption are –1.0 and +0.2 W m−2, respectively. In spite of the fact that the mass concentrations of ammonium sulfate and total carbon are similar, their contribution to the aerosol direct forcing is different. We conclude that ammonium sulfate plays the major role in this process and organics have an additional impact.  相似文献   

8.
Transport impacts on atmosphere and climate: Aviation   总被引:1,自引:0,他引:1  
Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion. The last major international assessment of these impacts was made by the Intergovernmental Panel on Climate Change (IPCC) in 1999. Here, a comprehensive updated assessment of aviation is provided. Scientific advances since the 1999 assessment have reduced key uncertainties, sharpening the quantitative evaluation, yet the basic conclusions remain the same. The climate impact of aviation is driven by long-term impacts from CO2 emissions and shorter-term impacts from non-CO2 emissions and effects, which include the emissions of water vapour, particles and nitrogen oxides (NOx). The present-day radiative forcing from aviation (2005) is estimated to be 55 mW m?2 (excluding cirrus cloud enhancement), which represents some 3.5% (range 1.3–10%, 90% likelihood range) of current anthropogenic forcing, or 78 mW m?2 including cirrus cloud enhancement, representing 4.9% of current forcing (range 2–14%, 90% likelihood range). According to two SRES-compatible scenarios, future forcings may increase by factors of 3–4 over 2000 levels, in 2050. The effects of aviation emissions of CO2 on global mean surface temperature last for many hundreds of years (in common with other sources), whilst its non-CO2 effects on temperature last for decades. Much progress has been made in the last ten years on characterizing emissions, although major uncertainties remain over the nature of particles. Emissions of NOx result in production of ozone, a climate warming gas, and the reduction of ambient methane (a cooling effect) although the overall balance is warming, based upon current understanding. These NOx emissions from current subsonic aviation do not appear to deplete stratospheric ozone. Despite the progress made on modelling aviation's impacts on tropospheric chemistry, there remains a significant spread in model results. The knowledge of aviation's impacts on cloudiness has also improved: a limited number of studies have demonstrated an increase in cirrus cloud attributable to aviation although the magnitude varies: however, these trend analyses may be impacted by satellite artefacts. The effect of aviation particles on clouds (with and without contrails) may give rise to either a positive forcing or a negative forcing: the modelling and the underlying processes are highly uncertain, although the overall effect of contrails and enhanced cloudiness is considered to be a positive forcing and could be substantial, compared with other effects. The debate over quantification of aviation impacts has also progressed towards studying potential mitigation and the technological and atmospheric tradeoffs. Current studies are still relatively immature and more work is required to determine optimal technological development paths, which is an aspect that atmospheric science has much to contribute. In terms of alternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation's impacts on climate if the fuel is produced in a carbon-neutral way: such fuel is unlikely to be utilized until a ‘hydrogen economy’ develops. The introduction of biofuels as a means of reducing CO2 impacts represents a future possibility. However, even over and above land-use concerns and greenhouse gas budget issues, aviation fuels require strict adherence to safety standards and thus require extra processing compared with biofuels destined for other sectors, where the uptake of such fuel may be more beneficial in the first instance.  相似文献   

9.
A recent multidisciplinary compilation of studies on changes in the Siberian environment details how climate is changing faster than most places on Earth with exceptional warming in the north and increased aridity in the south. Impacts of these changes are rapid permafrost thaw and melt of glaciers, increased flooding, extreme weather events leading to sudden changes in biodiversity, increased forest fires, more insect pest outbreaks, and increased emissions of CO2 and methane. These trends interact with sociological changes leading to land-use change, globalisation of diets, impaired health of Arctic Peoples, and challenges for transport. Local mitigation and adaptation measures are likely to be limited by a range of public perceptions of climate change that vary according to personal background. However, Siberia has the possibility through land surface feedbacks to amplify or suppress climate change impacts at potentially global levels. Based on the diverse studies presented in this Ambio Special Issue, we suggest ways forward for more sustainable environmental research and management.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01626-7.  相似文献   

10.
Miller PA  Smith B 《Ambio》2012,41(Z3):281-291
The Arctic land area has warmed by > 1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO(2) for 1980-2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

11.
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.  相似文献   

12.
According to most global climate models, a continued build-up of CO2 and other greenhouse gases will lead to significant changes in temperature and precipitation patterns over large parts of the Earth. Below-ground processes will strongly influence the response of the biosphere to climate change and are likely to contribute to positive or negative biospheric feedbacks to climate change. Current global carbon budgets suggest that as much as 2000 Pg of carbon exists in soil systems. There is considerable disagreement, however, over pool sizes and flux (e.g. CO2, CH4) for various ecosystems. An equilibrium analysis of changes in global below-ground carbon storage due to a doubled-CO2 climate suggests a range from a possible sink of 41 Pg to a possible source of 101 Pg. Components of the terrestrial biosphere could be managed to sequester or conserve carbon and mitigate accumulation of greenhouse gases in the atmosphere.  相似文献   

13.
Abstract

The possibility of decreasing the Nordic countries’ contribution to global warming in the future is examined. Anthropogenic carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions are considered. Global average radiative forcing is used as a measure of the greenhouse impact caused by the emissions. Past emissions are included in the study because they have impact far into the future. The calculation method utilized in this study can be applied to any other country.

Two hypothetical future emission development cases are presented, and the radiative forcing caused by them is calculated. In the higher emission (case A) CO2 emissions remain above current level, while N2O and CH4 emissions decrease. In the lower emission (case B) the emissions decrease to about one–tenth of the current emissions by the year 2100.

Only if very strict emission reductions (case B) take place will the greenhouse impact of the Nordic countries return to current levels during next century. Likewise, the per capita radiative forcing of Nordic countries will remain above global average unless the emissions decrease drastically (case B) and the current population levels are used in per capita calculation.  相似文献   

14.
Transport affects climate directly and indirectly through mechanisms that operate on very different timescales and cause both warming and cooling. We calculate contributions to the historical development in global mean temperature for the main transport sectors (road transport, aviation, shipping and rail) based on estimates of historical emissions and by applying knowledge about the various forcing mechanisms from detailed studies. We also calculate the development in future global mean temperature for four transport scenarios consistent with the IPCC SRES scenarios, one mitigation scenario and one sensitivity test scenario. There are large differences between the transport sectors in terms of sign and magnitude of temperature effects and with respect to the contributions from the long- and short-lived components. Since pre-industrial times, we calculate that transport in total has contributed 9% of total net man-made warming in the year 2000. The dominating contributor to warming is CO2, followed by tropospheric O3. By sector, road transport is the largest contributor; 11% of the warming in 2000 is due to this sector. Likewise, aviation has contributed 4% and rail ~1%. Shipping, on the other hand, has caused a net cooling up to year 2000, with a contribution of ?7%, due to the effects of SO2 and NOx emissions. The total net contribution from the transport sectors to total man-made warming is ~15% in 2050, and reaches 20% in 2100 in the A1 and B1 scenarios. For all scenarios and throughout the century, road transport is the dominating contributor to warming. Due to the anticipated reduction in sulphur content of fuels, the net effect of shipping changes from cooling to warming by the end of the century. Significant uncertainties are related to the estimates of historical and future net warming mainly due to cirrus, contrails and aerosol effects, as well as uncertainty in climate sensitivity.  相似文献   

15.
The continuing increase in atmospheric carbon dioxide (CO2) makes it essential that climate sensitivity, the equilibrium change in global mean surface temperature that would result from a given radiative forcing, be quantified with known uncertainty. Present estimates are quite uncertain, 3 +/- 1.5 K for doubling of CO2. Model studies examining climate response to forcing by greenhouse gases and aerosols exhibit large differences in sensitivities and imposed aerosol forcings that raise questions regarding claims of their having reproduced observed large-scale changes in surface temperature over the 20th century. Present uncertainty in forcing, caused largely by uncertainty in forcing by aerosols, precludes meaningful model evaluation by comparison with observed global temperature change or empirical determination of climate sensitivity. Uncertainty in aerosol forcing must be reduced at least three-fold for uncertainty in climate sensitivity to be meaningfully reduced and bounded.  相似文献   

16.
The Arctic land area has warmed by >1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980–2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

17.
Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.  相似文献   

18.
Abstract

The continuing increase in atmospheric carbon dioxide (CO2) makes it essential that climate sensitivity, the equilibrium change in global mean surface temperature that would result from a given radiative forcing, be quantified with known uncertainty. Present estimates are quite uncertain, 3 ± 1.5 K for doubling of CO2. Model studies examining climate response to forcing by greenhouse gases and aerosols exhibit large differences in sensitivities and imposed aerosol forcings that raise questions regarding claims of their having reproduced observed large-scale changes in surface temperature over the 20th century. Present uncertainty in forcing, caused largely by uncertainty in forcing by aerosols, precludes meaningful model evaluation by comparison with observed global temperature change or empirical determination of climate sensitivity. Uncertainty in aerosol forcing must be reduced at least three-fold for uncertaintyin climate sensitivity to be meaningfully reduced and bounded.  相似文献   

19.
Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42?) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO42? and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42?, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration–response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO42? and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of ?74 mW m?2 in 2000 and between ?15 and ?97 mW m?2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the loss of net negative radiative forcing.  相似文献   

20.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号