首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spiromesifen (Oberon) is a new insecticide and miticide of chemical class ketoenol active against white flies (Bemisia spp., Trialeuroides spp.) and spider mites (Tetranychus and Panonychus spp.). Due to its potential significance in insect resistance management, it is important to establish its behaviour on crop and environment. In the present study, the degradation/dissipation of spiromesifen on tea crop under tropical environmental conditions was studied and its DT(50) (t(1/2)), and DT(90) (time to reduce to 90% of the initial value) were estimated. Spiromesifen was sprayed on tea crop after first rain flush at four different locations @ 96 and 192ga.i.ha(-1). Samples of tea leaves were drawn at 0, 1, 3, 5, 7, 10, 15, 21 and 30 days after treatment and that of soil at 10 days after treatment and at harvest from 0 to 15 and 15 to 30cm layers. After crude extraction of tea leaves for spiromesifen residues with acetone:water, the contents were partitioned with cyclohexane:ethyl acetate and cleaned up on Florosil column. Soil residues were also extracted similarly. Quantification of residues was done on GC-MS in Selected Ion Monitoring (SIM) mode in mass range 271-274m/z. The LOQ of this method was found to be 0.05microgg(-1) while LOD being 0.015microgg(-1). The DT(50) of spiromesifen when applied at recommended doses in tea leaves was found to be 5.0-8.5 days. Ninety-nine percent degradation was found to occur within 33-57 days after application. In soil, no residues of spiromesifen were detectable 10 days after treatment.  相似文献   

2.
Behaviour of forchlorfenuron residues in grape,soil and water   总被引:3,自引:0,他引:3  
Sharma D  Awasthi MD 《Chemosphere》2003,50(5):589-594
Persistence of forchlorfenuron residues in grape berries at harvest following its dip application as single or split doses to grape berry clusters and periodic dissipation of forchlorfenuron residues in grape berries following foliar spray application were studied. Periodic dissipation of forchlorfenuron residues following its fortification in soil and water were also studied. Splitting the dip application concentration of forchlorfenuron to grape berries reduced its residues in the berries at harvest, which persisted for more than 65 days from all treatments. In case of foliar application, however, the residues of forchlorfenuron in/on the grape berries persisted for 15-20 days only from three treatment concentrations of 2, 3 and 4 ml/l and dissipated with half-lives of 3.4-4.5 days. The residues of forchlorfenuron dissipated faster in soils maintained at field capacity moisture condition than in air dry soils. There was wide variation in its residue persistence in soil (DT50 = 15.1-121.3 days) depending on soil type and moisture condition. Forchlorfenuron residues persisted for more than 30 days in water and its dissipation was fastest at a water salinity level of 3.85 mmho/ cm although the rate of dissipation was not significantly affected by the change in salinity level from <0.04 to 5.90 mmho/cm.  相似文献   

3.
The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9 x 10-12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg-1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg-1, fixed by EU) after 7 days for both treatments.  相似文献   

4.
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %-104 % and 84 %-96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg(-1). The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t(1/2)) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg(-1)) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).  相似文献   

5.
Gupta S  Gajbhiye VT 《Chemosphere》2002,47(9):901-906
Effect of concentration, moisture and soil type on dissipation of flufenacet from soil has been studied under laboratory condition. The treated soil samples (1 and 10 microg/g levels) were incubated at 25+/-1 degrees C. The effect of moisture was studied by maintaining the treated soil samples (10 microg/g level) at field capacity and submerged condition. In general, flufenacet persisted for 60-90 days at lower and beyond 90 days at high rate. The dissipation of flufenacet from soil followed first order kinetics with half-life (DT50) values ranging from 10 to 31 days. The dissipation of flufenacet was faster at low rate than high rate of application. The slow dissipation at high rate could be attributed to inhibition of microbial activity at high rate. There was little overall difference in rate of dissipation in Ranchi and Nagpur soil maintained at field capacity and submerged condition moisture regimes. In Delhi soil net dissipation was faster under field capacity moisture than submerged condition. Soil types greatly influenced the dissipation of flufenacet. Dissipation was fastest in Delhi soil (DT50 10.1-22.3 days) followed by Ranchi soil (DT50 10.5-24.1 days) and least in Nagpur soil (DT50 29.2-31.0 days). The difference in dissipation could be attributed to the magnitude of adsorption and desorption of flufenacet in these soils.  相似文献   

6.
Dissipation of fungicide difenoconazole (3-chloro-4-[(2RS,4RS;2RS,4SR)-4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl 4-chlorophenyl ether) was studied following its application on apples intended for production of baby food. The apples (varieties: Jonagold Decosta, Gala and Idared) were sprayed with the formulation to control pathogens causing fungal diseases: powdery mildew (Podosphaera leucotricha ELL et Ev./Salm.) and apple scab (Venturia inaequalis Cooke/Aderh.). A validated gas chromatography-based method with simultaneous electron capture and nitrogen phosphorus detection (GC-ECD/NPD) was used for the residue analysis. The analytical performance of the method was highly satisfactory, with expanded uncertainties ≤ 19% (a coverage factor, k = 2, and a confidence level of 95%). The dissipation of difenoconazole was studied in pseudo-first-order kinetic models (for which the coefficients of determination, R2, ranged between 0.880 and 0.977). The half-life of difenoconazole was 12–21 days in experiments conducted on three apple varieties. In these experiments, the initial residue levels declined gradually and reached the level of 0.01 mg kg?1 in 50–79 days. For the residue levels to remain below 0.01 mg kg?1 (the maximum acceptable concentration for baby foods), difenoconazole must be applied approximately 3 months before harvest, at a dose of 0.2 L ha?1 (50 g of an active ingredient per ha).  相似文献   

7.
A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha?1, respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.  相似文献   

8.
This study investigated the dissipation kinetics of oxytetracycline in soils under aerobic and anoxic conditions. Laboratory experiments showed that the dissipation of oxytetracycline in soil followed first-order reaction kinetics and its dissipation rates decreased with increasing concentration. Oxytetracycline dissipated faster in soil under aerobic conditions than under anoxic conditions. The half-lives for oxytetracycline in soil under aerobic conditions ranged between 29 and 56 days for non-sterile treatments and 99-120 days for sterile treatments, while under anoxic conditions the half-lives of oxytetracycline ranged between 43 and 62 days in the non-sterile soil and between 69 and 104 days in the sterile soil. This suggests microbes can degrade oxytetracycline in agricultural soil. Abiotic factors such as strong sorption onto soil components also played a role in the dissipation of oxytetracycline in soil.  相似文献   

9.
Residues of Bromopropylate were determine in artichokes, strawberries and beans after foliar spray of acaricide at two rates. The rates used were 1 g/l formulated product (normal recommended) and 1.5 g/l. The residue levels of bromopropylate in the three crops after 14 days were lower than 0.7 ppm and did not exceed the Maximum Residual Level (MRL) recommended by FAO. In the artichokes and strawberries, the total concentration of residues decreased by 50% of the initial level after 2-3 days. Only trace levels of the bromopropylate residues (less than 0.01 ppm) were detected in the "hearts" of the artichokes. Bromopropylate residues in the green beans were also less than 0.8 ppm after the first day of foliar spraying. The kinetic of degradation occurred in two different steps. In the first step (4-6 days) the dissipation of bromopropylate was faster whereas in the second step (7-14 days) the loss of residues was much slower.  相似文献   

10.
Prihoda KR  Coats JR 《Chemosphere》2008,73(7):1102-1107
Transgenic crops expressing insecticidal, crystalline (Cry) Bacillus thuringiensis (Bt) proteins were commercialized in the US in 1996. There is little information in the peer-reviewed literature on the environmental fate of the coleopteran-active Bt Cry3Bb1 protein expressed in event MON863 corn. The exposure characterization of Bt proteins is unique in that the fate of the protein in soil and in crop residue must be considered. To date, the significance of macrodecomposing organisms, such as earthworms, isopods, and springtails, to the dissipation of Bt proteins present in crop residue has not been assessed. In addition, the input of Bt proteins into soil through leaching from post-harvest crop residue has not been examined. Two laboratory microcosm studies were conducted to determine the fate of Bt Cry3Bb1 in decomposing MON863 corn residue and to determine whether Bt proteins can enter soil by leaching from crop residue. In addition, the importance of macrodecomposing organisms to the degradation of Bt proteins in corn residue was assessed. Laboratory microcosms containing MON863 corn leaf, root, and stalk with and without macrodecomposers were used to examine the fate of Bt Cry3Bb1 in post-harvest MON863 corn residue. A half-life of less than five days was found for Bt Cry3Bb1 protein in decomposing MON863 corn residue. There was a trend of increasing half-life of Cry3Bb1 in microcosms containing macrodecomposers, however, this trend was only significant (p<0.05) for Bt Cry3Bb1 in MON863 leaf tissue and this increase is not likely relevant for non-target exposure. The recovery of Bt Cry3Bb1 protein from soil extracts was either below the limit of quantification (9 ng g(-1) soil) or below the limit of detection (0.7 ng mL(-1)) at all time points during the study. Based on the results from this study, Bt protein leaching from post-harvest crop residue is not a significant contributor to Bt protein input into soil.  相似文献   

11.
The potential influence of earthworm activity on the mobility of radionuclides in soils and their subsequent availability for uptake by plants and transfer to higher trophic levels is briefly reviewed. The accumulation of caesium by the earthworm Aporrectodea longa from soil and from plant litter was investigated in laboratory experiments, as was the effect of reworking (through burrowing and ingestion) soil and soil with added organic material, on the extractability of caesium (ammonium acetate extraction). Soil was spiked with (134)Cs, organic matter with (137)Cs. In soil-fed worms, most of the radioactivity measured was eliminated with the gut contents; 5-25% of the ingested radioactivity was retained or assimilated. Loss of caesium from soil-fed worms followed a two component curve, with an initial rapid loss due to gut clearance (half-life of loss (Tb1/2) of about 0.2-0.6 days) and a slower loss of assimilated caesium (Tb1/2 of 15-26 days). Loss rates of assimilated caesium from worms fed on fragmented apple leaves were found to have half-lives of 18-54 days. Assimilation of caesium from apple leaves was higher than from soil, ranging from 55-100% of the activity measured before gut clearance. Dry weight transfer factors (concentration in worm tissue/concentration in substrate) for worms cleared of their gut contents were similar for the two substrates 0.04 and 0.04 for two loss experiments with worms fed on radioactive soil, and 0.03 and 0.05 for worms fed on apple leaves. After three months of reworking soil and soil/organic mixtures, A. longa was found to have no measurable effect on the extractable fraction of caesium. If earthworms have any subtle effects they were masked by changes in availability that occurred when the spiked soil and organic substrates were mixed together. Only about half of the extractable fraction in soil was recovered when soil was mixed with organic material suggesting that some of the labile fraction in soil had become complexed with organic material. This exchange occurred in substrate mixtures with and without worms. The limitation of chemical extraction procedures is discussed and suggestions for further work are presented.  相似文献   

12.
Copper (Cu) desorption and toxicity to the Florida apple snail were investigated from soils obtained from agricultural sites acquired under the Comprehensive Everglades Restoration Plan. Copper concentrations in 11 flooded soils ranged from 5 to 234 mg/kg on day 0 and from 6.2 to 204 mg/kg on day 28 (steady-state). The steady-state Cu concentration in overlying water ranged from 9.1 to 308.2 microg/L. In a 28-d growth study, high mortality in snails occurred within 9 to 16 d in two of three soil treatments tested. Growth of apple snails over 28 d was affected by Cu in these two treatments. Tissue Cu concentrations by day 14 were 12-23-fold higher in snails exposed to the three soil treatments compared to controls. The endangered Florida snail kite and its main food source, the Florida apple snail, may be at risk from Cu exposure in these managed agricultural soil-water ecosystems.  相似文献   

13.
Fu J  Wang Y  Zhang A  Zhang Q  Zhao Z  Wang T  Jiang G 《Chemosphere》2011,82(5):648-655
Fengjiang is a large e-waste dismantling site located in southeast China. In this paper, apple snail and soil samples were collected from this e-waste dismantling site and 25 vicinal towns to investigate the contamination status, spatial distributions and congener patterns of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). Total PCB concentrations in apple snails (3.78-1812 ng g−1 dry weight (dw)) were significant higher than that in soil samples (0.48-90.1 ng g−1 dw). PBDE (excluding BDE 209) concentrations in apple snail and soil samples ranged from 0.09 to 27.7 ng g−1 dw and 0.06 to 31.2 ng g−1 dw, respectively. Concentrations of PCBs and PBDEs in snails and soils correlated negatively with the distance from Fengjiang. Both the concentrations and profiles of the pollutants were significantly correlated (p < 0.05) between the snail and soil samples, indicating the suitability of apple snail as a reliable bioindicator for PCBs and PBDEs contamination in this region. Relatively high concentrations of PCBs and PBDEs at locations far from e-waste dismantling sites implied that these pollutants have been transported to surrounding regions.  相似文献   

14.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

15.

The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9× 10?12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg?1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg?1, fixed by EU) after 7 days for both treatments.  相似文献   

16.
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %–104 % and 84 %–96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg?1. The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t1/2) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg?1) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).  相似文献   

17.
Influence of biotic and abiotic factors on dissipating metalaxyl in soil.   总被引:9,自引:0,他引:9  
P Sukul  M Spiteller 《Chemosphere》2001,45(6-7):941-947
Under laboratory condition, dissipation of metalaxyl in sterile and non-sterile soils, its sorption behaviour and fate in presence of light have been studied. The half-life value of metalaxyl was found in the range of 36-73 d in non-sterile soil. 5.3-14.7% dissipation was observed due to abiotic factors other than light. Metalaxyl was found photostable in soil showing half-life of 188- 502 h under simulated sunlight. In adsorption study, a non-linear relationship between concentration of metalaxyl and its adsorption into soils was observed. Estimated koc value increased as organic carbon content decreased. Adsorption and desorption kD values ranged between 53.5 and 151.1.  相似文献   

18.
Jin CW  Zheng SJ  He YF  Zhou GD  Zhou ZX 《Chemosphere》2005,59(8):1151-1159
The consumption of heavy metals is detrimental to human health and most countries restrict the concentration of metals such as lead (Pb) in food and beverages. Recent tests have detected high Pb concentrations in certain commercial brands of tea leaves and this finding has raised concerns for both producers and consumers. To investigate what factors may be contributing to the increase in Pb accumulation in the tea leaves we collected tea leaves and soils from tea producing areas and analyzed them for Pb concentration, pH and organic matter content. The result showed the Pb concentration of 47% investigated tea leaves samples was beyond 2 mg kg(-1), the permissible levels given by China. The total Pb concentration in the surface and subsurface soil layers averaged 36.4 and 32.2 mg kg(-1), respectively which fall below of the 60 mg kg(-1) limit provided for organic tea gardens in China. The pH of the tea garden soils was severely acidic with the lowest pH of 3.37. Soils under older tea gardens tended to have a lower pH and a higher Pb bioavailability which was defined as the amount of lead extracted by CaCl2 solution than those under younger tea gardens. We found that the concentration of bioavailable Pb and the percentage of bioavailable Pb (bioavailable Pb relative to total Pb concentration) were positively correlated with soil H+ activity and soil organic matter content, and the organic matter accumulation contribute more effects on Pb bioavailability in these two factors. We conclude that soil acidification and organic matter accumulation could contribute to increasing Pb bioavailability in soil and that these could increase Pb uptake and accumulation in the tea leaves.  相似文献   

19.
Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21 d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied 14C in soil samples and from 0.0% to 2.4% of applied 14C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26 h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31 h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied 14C remained extractable during the experiment and, after 21 d, less than 15% of applied 14C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied 14C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole.  相似文献   

20.
Han WY  Shi YZ  Ma LF  Ruan JY  Zhao FJ 《Chemosphere》2007,66(1):84-90
Tea is a widely consumed beverage. However, recent studies revealed that there were an increasing number of cases of tea products exceeding the former maximum permissible concentration (MPC) in China for Pb (2 mg kg(-1)). Tea Pb contamination is an issue affecting trade and consumer confidence. Root uptake of Pb could contribute significantly to Pb accumulation in tea leaves due to the strong acidity of many tea garden soils. We conducted pot and field experiments to evaluate the effect of liming on Pb uptake by tea plants on two highly acidic soils (pH3.6). Additions of CaCO(3) significantly increased soil pH by up to 1 unit and decreased soil extractable Pb by up to 32%. Liming resulted in a decrease in the proportion of Pb in the exchangeable and carbonate-bound fractions, with a concurrent increase in the fractions bound to Fe/Mn oxides and residues. Liming significantly decreased Pb concentrations of fine roots, stems and new shoots of tea plants in the pot experiment. In the field experiments, the effect of liming was not significant during the first year following CaCO(3) application, but became significant during the second and third years and Pb concentration in the new shoots was decreased by approximately 20-50%, indicating that liming of acidic tea garden soils is an effective way to reduce Pb contamination of tea. The study also reveals a distinct seasonal variation, with Pb concentration in the new shoots following the order of spring>autumn>summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号