共查询到20条相似文献,搜索用时 0 毫秒
1.
采用Ti基RuO2涂层形稳电极为阳极,研究了电化学方法对黄连素制药废水的处理效果. 考察了废水初始pH,电极板间距及电流强度对废水中黄连素及CODCr去除率的影响,确定了电化学法处理黄连素制药废水的最佳条件. 结果表明,废水初始pH为5.13~9.07,电流强度为50.0 mA/cm2,电极板间距为1.0 cm,处理120 min,电化学法对黄连素制药废水处理效果较好;初始pH为7.05时黄连素和CODCr的去除率分别达到97.5%和60.5%. 同时,研究了处理过程中废水可生化性的变化规律,并在此基础上计算了电化学法处理黄连素制药废水的能耗. 结果显示,电化学方法是一种非常有效的黄连素制药废水预处理方法,出水的可生化性明显提高,ρ(BOD5)/ρ(CODCr)(B/C比)高达0.800左右. 相似文献
2.
应用微电解法预处理磷霉素钠制药废水 总被引:1,自引:0,他引:1
采用微电解法预处理磷霉素钠制药废水是一种行之有效的方法。本试验选用铸铁屑、粒状活性炭作为基本原料,分别考察了铁炭比、进水pH值、反应时间、反应温度等因素对废水处理效率的影响。经试验得到最佳工艺条件为:铁炭比为(5~9):1,进水pH值=4,铁屑加入量为(4~5)g/100mL废水,温度为30℃,CODcr的去除率能达到40%~50%。 相似文献
3.
电化学氧化法预处理超高盐榨菜腌制废水 总被引:1,自引:0,他引:1
鉴于超高盐榨菜腌制废水导电性良好,采用电化学氧化法进行预处理(阳极为Ti基RuO2-TiO2-IrO2-SnO2网状涂层形稳电极),考察初始pH、电流密度、电解时间和极板间距对CODCr和氨氮去除率的影响,并探讨该过程中有机物相对分子量的变化规律.结果表明,在电流密度156 mA/cm2、极板间距1.5 cm、初始pH 4.3~5.0、电解时间120 min时,CODCr和氨氮去除率较佳,分别为55.74%和99.77%.出水pH升至9.54,盐度由7.0%降至6.4%,大分子有机物转化为小分子有机物,对后续生物处理有利. 相似文献
4.
垃圾渗滤液膜过滤浓缩液含盐量高,色度和有机污染物浓度高,处理难度大。采用批式试验,以Ti/RuO2-IrO2为阳极、不锈钢为阴极对垃圾渗滤液膜过滤浓缩液进行电化学氧化处理,研究电解时间、电流密度和极板间距对浓缩液色度、COD、氨氮去除率和电导率的影响。结果表明:电流密度为6 A/dm2,电解3 h时,色度去除率达94%,出水色度为15倍;电解5 h,氨氮去除率为99.67%,出水氨氮为1.4 mg/L;电解6 h,COD去除率为60.43%,出水COD浓度为1156 mg/L。以Ti/RuO2-IrO2为阳极电化学氧化技术对垃圾浓缩液色度和氨氮的去除效果较好,适宜的电流密度和极板间距分别为6 A/dm2和4 cm。 相似文献
5.
采用电化学氧化法处理黄连素制药废水,探讨了过程中黄连素的去除动力学,考察了阳极材料、偏压、初始pH及Cl-浓度等因素对废水中黄连素去除的影响。结果表明,黄连素在Pt/Ti等四种阳极上的电化学降解均符合假一级动力学;电化学生成的活性氯对黄连素的降解起重要作用,阳极偏压和初始Cl-浓度是影响黄连素降解速率的控制因素;在以Pt/Ti为阳极,阳极偏压为2.0~2.5 V,废水初始pH为5.0~9.0,Cl-浓度为0.10 mol/L条件下,电化学过程对黄连素降解动力学速率常数较高;黄连素易降解而生成有机酸等小分子化合物,其去除率达到90%以上。 相似文献
6.
以两个钛网涂层的DSA电极(Ti/Sb-SnO2/PbO2)作阳极,一个不锈钢板作阴极,形成一个双阳极的电化学反应体系。以模拟的β-萘磺酸生产废水为研究对象,系统地考察反应时间、电流密度、初始pH值等因素对废水中污染物的去除能力的影响。结果表明,在电流密度为50 mA/cm2,初始pH值为3.0,电解质浓度为10 g/L的Na2SO4,反应240 min后COD去除效率达到88.0%。为了提高处理效率和加快反应速率,我们给DSA电极体系中添加粒子电极(MnO2/γ-Al2O3),在不变的反应条件下,120 min后COD去除效率达到91.2%,意味着一种简单而有效地处理β-萘磺酸生产废水方法变成现实。 相似文献
7.
采用电化学双极法处理高浓度含铜黄连素制药废水。在分析其水质特征的基础上,分别考察了极板间距、电流和初始pH等因素对废水中黄连素和Cu2+去除率的影响。结果表明:无需添加电解质与氧化剂,在极板间距为2.0cm,电流为4.0 A,不调节废水pH的条件下,处理时间300 min内,黄连素和Cu2+浓度分别由初始的1 700和22 000mg/L下降至120和55.0 mg/L,去除率达93.3%和99.9%以上。通过计算得出,铜的平均回收率达到97.1%,即处理每t废水可回收铜21.4 kg。由此可见,电化学双极法既降解了废水中黄连素,又回收了大部分的铜。 相似文献
8.
电化学法处理电镀废水 总被引:1,自引:0,他引:1
根据电镀废水的来源、水质状况以及目前常用的处理方法所存在的问题,介绍了电化学法处理电镀废水的机理和工艺流程,并结合工程实例阐述了该法处理电镀废水的可行性和可靠性。 相似文献
9.
10.
本文研究了上流式厌氧污泥床常温处理制药有机废水的工况,并对影响反应器性能的各种因素进行了分析.结果表明,在自然温度条件下,当进水 COD 50000mg/L 左右时,容积负荷4—7kg COD/m~3.d,COD 去除率可保持在90%以上. 相似文献
11.
12.
在室温下,通过改变支持电解质(Na2SO4)浓度、负载电压、pH值和苯酚初始浓度等影响因素,对苯酚模拟废水进行电化学处理,结果表明:支持电解质(Na2SO4)浓度为20.0 g/L、负载电压为5.5 V、pH值为8.0是处理苯酚模拟废水的最佳条件。 相似文献
13.
电化学法处理苯酚模拟废水的研究 总被引:2,自引:0,他引:2
电化学法处理废水中有机污染物,具有效率高、操作简便、与环境兼容等优点,是一种很有潜力的高级氧化技术。实验是以废旧一号干电池中的碳棒作电极,用烧杯作电解池,在室温下,通过改变支持电解质(Na2SO4)浓度、负载电压、pH值和苯酚初始浓度等影响因素,对苯酚模拟废水进行电化学处理,利用高效液相色谱仪对其处理效果进行了分析研究,结果表明:支持电解质(Na2SO4)浓度为20.0g/L、负载电压为5.5V、pH值为8.0是处理苯酚模拟废水的最佳条件。最后对苯酚的降解机理进行了初步探讨。 相似文献
14.
为了实现高浓度制药废水的处理,采用微波强化Fenton氧化体系对污水进行预处理,考察了微波功率、微波辐照时间、催化剂用量和氧化剂用量对高浓度有机废水中有机物去除效果的影响。来水COD 39 760 mg/L,B/C为0.254,控制微波功率为200 W、微波辐照时间11 min,加入0.6 mol/L的Fe(NO_3)_3催化剂、30%H_2O_2 4 mL/L氧化剂,COD去除率可达62.41%,B/C由0.254升至0.619。实现有机物去除,提高污水可生化性。 相似文献
15.
采用电化学稳定性较好的钛基镀RuO2为阳极,以不锈钢板为阴极,对污染土壤淋洗液中的六氯苯进行电化学处理,研究了溶液初始pH值、HCB初始浓度、电解时间、电解质浓度、外加电压等因素对六氯苯处理效果的影响。所得最佳工艺条件为:用TX-100做增溶剂时,在HCB初始浓度300μg/L、溶液初始pH为3,电解质浓度为1%,外加电压为6V时,电解3hHCB去除率为60.3%。气相色谱分析表明:阴极还原脱氯是HCB电化学降解的主要途径,检出的降解产物有五氯苯、1,2,4,5-四氯苯和1,2,3,4-四氯苯。 相似文献
16.
电解-SBR法处理制药废水试验研究 总被引:1,自引:0,他引:1
采用电解 SBR串联工艺处理化学合成制药废水 ,试验分别考察了电解电压、pH以及电解时间对电解效果的影响 ,不同电解时间对后续SBR反应器处理效果的影响。结果表明 ,原水BOD5/COD仅为 0 .1 7,是难生物降解废水 ,经过电解法预处理后 ,出水BOD5/COD可达到 0 .51 ,可生化性大大提高 ,但电解时间过长反而有可能使废水可生化性下降。在进水COD在 2 0 0 0mg/L以下时 ,出水水质可达GB8978- 1 996的二级排放标准 相似文献
17.
电化学法处理染色废水 总被引:8,自引:0,他引:8
电化学法处理染色废水牛健南编译(青岛建筑工程学院,山东266033)TREATMENTOFDYEINGWASTEWATERWITHELECTROCHEMICALPROCESS¥TranslatedbyNiuJiannay(QingdaoArchite... 相似文献
18.
19.
本文采用生物吸附再生曝气法处理SMZ、TMP和PNCT混合制药废水,用28升小型曝气装置,活性污泥经培养驯化后,连续稳定运行半年多时间.进水CODcr1200-1700mg/l,BOD_5250-800mg/l,HRT为17-21h,出水CODcr平均去除率81%,BOD_5平均去除率94%;胺基物和硝基物去除率也稳定在90%以上,取得了比较明显的去除效果. 相似文献
20.
制药废水属于高浓度含微生物难降解,对微生物有抑制作用的有机废水,水质水量波动大,本文对制药厂厌氧处理出水,分别采用SBR和SBBR法进行对比试验,研究其COD去除效果。当曝气量控制在0.02m3/h,沉淀时间在2h时,在2~10h反应时间段内,对比了SBR和SBBR法对CODCr的去除率。试验结果表明:总体上,SBBR法CODCr去除效果优于SBR,且更稳定,CODCr去除率能达到90%以上,而SBR在反应时间6h时达到CODCr最大去除率:82.03%后,出水中CODCr不降反升。 相似文献