首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effects of arsenic (As) species, such as As(III), As(V) and dimethylarsinic acid (DMA), on the accumulation of As in cucumber (Cucumis sativus), as well as on its growth in a soil mesocosm were evaluated. When Cucumis sativus was cultivated in soils contaminated with 20 and 50 mg/kg of As(III), As(V) or DMA for 40 days, the growth was markedly inhibited by the inorganic As (As(III) and As(V)) rather than the organic As (DMA). Irrespective of the As species, the As concentrations accumulated in Cucumis sativus increased with increasing As concentration in the soil. The As bioaccumulation factors from soil into the tissue of Cucumis sativus were 17.5–35.4, 29.3–42.7 and 17.6–25.7 for As(III), As(V) and DMA, respectively. In addition, the As translocation factors from the roots to shoots were 0.025–0.031, 0.018–0.032 and 0.014–0.026 for As(III), As(V) and DMA, respectively. In conclusion, Cucumis sativus mainly accumulated As in its roots rather than its shoots and easily accumulated inorganic rather than organic As from the soil into its tissue.  相似文献   

2.
Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.  相似文献   

3.
The cytotoxicity of trivalent and pentavalent inorganic arsenic was studied in cultured mouse fibroblasts. Concentrations of As(III) in the M range and approximately 10-fold higher concentrations of As(V) led to a reduction of cellular proliferation and viability with a concomitant increase of LDH release and stimulation of lactate production. Cells pretreated with a low As(III) concentration were less sensitive to toxic doses of As(III) or As(V).Uptake of As(III) by the cells was greater than that of As(V). Both forms of inorganic arsenic were converted intracellularly to monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which were subsequently released into the culture medium. In As-pretreated cells, which proved more resistant to As toxicity, biotransformation of inorganic to MMA and DMA was increased.  相似文献   

4.
The effect of organic arsenic compounds and inorganic As(V) and As(III) on Vibrio fischeri luminescence and butyrylcholinesterase activity were evaluated using Microtox and microcalorimetric analysis. Organic arsenic compounds were arsenocholine (AsC), arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and the antibiotic 4-hydroxy-3-nitrobenzene arsonic acid (HNAA, Roxarsone(R)). HNAA, As(III) and As(V) were found to inhibit Vibrio fischeri light emission whereas MMA, DMA, AsC and AsB produced only a slight effect. By contrast, only AsC, AsB and As(III) were found to inhibit butyrylcholinesterase activity. Selected article from the 6th European Meeting on Environmental Chemistry, University of Belgrade, Serbia and Montenegro organized by Prof. Dr. Branimir Jovancicevic (www.research.plymouth.ac.uk/ace).  相似文献   

5.
Two-year old Ulmus laevis Pall (U. laevis) seedlings were cultivated in a three-month hydroponic experiment with inorganic (aresenite – As(III) and arsenate – As(V)) and organic (dimethylarsenic acid – DMA(V)) arsenic forms, at 0.06 and/or 0.6?mM concentrations. Further, the profile and content of total low molecular weight organic acids (LMWOAs) were investigated in the rhizosphere, roots and leaves of U. laevis. Obtained results showed that the addition of As(III) or As(V) individually or in a mixture led to increased LMWOAs concentration in the rhizosphere, especially of oxalic and malonic acids, in comparison to the control, while in roots the overall content of the profiled LMWOAs decreased. In both rhizosphere and roots, addition of the DMA(V) form resulted in the inhibition of LMWOAs exudation into the rhizosphere and their creation in plant roots. Leaves were characterised by a higher content of LMWOAs than in the rhizosphere and roots for all experimental systems, where the profile and content of LMWOAs was strictly correlated with the analysed As forms. Our study indicated that creation of LMWOAs in U. laevis organs and their exudation to the rhizosphere could be responsible for the As toxicity tolerance of the plants.  相似文献   

6.
In this study, the content and speciation of arsenic in coal waste and gas condensates from coal waste fires were investigated, respectively, using the digestion and sequential extraction methods. The fresh and fired-coal waste samples were collected from Yangquan, which is one of the major coal production regions in northern China. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) was used to determine the concentrations of four major arsenic species [As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA)] in the extracts, while ICP-MS was used to measure total As content. Arsenic content in the investigated coal wastes and the condensate ranges between 23.3 and 69.3 mg/kg, which are higher than its reported average content in soils. Arsenic in coal waste exists primarily in the residual fraction; this is followed in decreasing order by the organic matter-bound, Fe–Mn oxides-bound, exchangeable, carbonates-bound, and water-soluble fractions. The high content of arsenic in the condensates indicates that combustion or spontaneous combustion is one of the major ways for arsenic release into the environment from coal waste. About 15% of the arsenic in the condensate sample is labile and can release into the environment under leaching processes. The water extractable arsenic (WEA) in the fresh coal waste, fired coal wastes, and the condensate varied between 14.6 and 341 μg/kg, with As(V) as the major species. Furthermore, both MMA and DMA were found in fresh coal wastes, fired coal wastes, and the condensate.  相似文献   

7.
This study was focused on determining Arsenic (As), Lead (Pb), Cadmium (Cd) and Zinc (Zn) in 33 indigenous plants and 12 soil in-situ plant samples in Thai Nguyen Province, Vietnam. The results showed that the soils of surveyed mining areas contained 181.2- 6754.3 mg kg(-1) As, 235.5-4337.2 mg kg(-1) Pb, 0.8- 419 mg kg(-1) Cd and 361.8-17565.1 mg kg(-1) Zn depending on the characteristics of each mining site. These values are much higher than those typical for normal soil. The heavy metal uptake into shoots and roots of 33 indigenous plant species was also determined. Two species of the plants investigated, Pteris vittata L. and Pityrogramma calomelanos L. were As hyperaccumulators, containing more than 0.1% heavy metals in their shoots. Eleusine indica L., Cynodon dactylon L., Cyperus rotundus L. and Equisetum ramosissimum (Vauch) accumulate very high Pb (0.15-0.65%) and Zn (0.22-1.56%) concentration in their roots. Additional experiments to clarify the potential of six these plants as good candidates for phytoremediation of heavy metal pollution soil are being carried out in our laboratory.  相似文献   

8.
Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg?1, with mean As concentration 64.44 mg kg?1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27–385.98 mg kg?1 dry weight), while the lowest was in unpolished rice (0.31–0.52 mg kg?1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root ? soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg?1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.  相似文献   

9.
Species-level study on arsenic availability from dietary components   总被引:1,自引:0,他引:1  
Arsenic (As) contaminated water and foodstuffs are of major concern. Samples of drinking–cooking water (n = 50), raw rice (n = 50), common vegetables (eight types), and common pulses (three types) were collected from households in the endemic region. The study found up to 70% As reduction by using safe water for cooking of rice and vegetables. Speciation study reflected more arsenate than arsenite and other organic arsenicals in all the types of samples. Male intake of 293 μg As through drinking water contained 38 μg arsenite and 246 μg arsenate, and female intake of 199 μg As contained 167 μg arsenate and 25 μg arsenite. In cooked rice, 108 μg As contained 69 μg arsenate and 17 μg arsenite with 9 μg dimethylarsonic acid (DMA). Total As consumption from cooked vegetables was 45 μg with 34 and 4 μg of arsenite and arsenate, respectively, and 5 μg of DMA. Data indicate that cooking with As-free water removes arsenic in already contaminated foodstuffs but without interconversion of the As species, from toxic inorganic to less toxic organic forms.  相似文献   

10.
A significant proportion of arsenic (As)-contaminated sites are temporarily or permanently under reducing condition, which may affect phytoextraction efficiency using the As-hyperaccumulator Pteris vittata L. In this work, a pot experiment was conducted to investigate the solubility and redox species of As in soil. The uptake of As by two populations of P. vittata and As-tolerant grass Holcus lanatus under different water regimes was examined. Waterlogging decreased the redox potential from 350 to?50 mV, leading to an approximately 40% reduction of As(V) to As(III) and an increased dissolved As concentration by 150%–300%. The changes in the speciation and concentration of As influenced its uptake by plants. A population collected from a temporarily waterlogged riverside in Guangxi province (GX population) had ninefold higher shoot As concentration under the waterlogged condition than that under the non-waterlogged condition, indicating that it preferred taking up As in the form of As(III). By contrast, a population of P. vittata collected from a dry land in Yunnan province (YN population) and H. lanatus demonstrated a preference to As(V). The GX population was an appropriate species for the phytoextraction of waterlogged sites. These results implied the importance of habitat ecology on the extraction efficiency of hyperaccumulators.  相似文献   

11.
The ability of plant species to accumulate arsenic (As) species in the biomass from As-contaminated soils is variable. Among the plants widely grown at the As-contaminated locations, Plantaginaceae and Cyperaceae families belong to the frequent ones. In this study, the ability of Plantago lanceolata (Plantaginaceae) and three wetland plant species representing the family Cyperaceae (Carex praecox, Carex vesicaria, and Scirpus sylvaticus) naturally occurring in the soils with an elevated As in the Czech Republic were investigated. The plants were cultivated under controlled conditions in an As-contaminated soil reaching 735?mg?kg?1 of the total As. The total As in plants reached up to 8.3?mg?kg?1 in leaves, and up to 155?mg?kg?1 in roots of C. praecox. Dominant As compounds were arsenite and arsenate with a small abundance of dimethylarsinic acid (DMA) in all the plant species. In Cyperaceae, small percentages of arsenobetaine (AB) and arsenocholine (AC) were detected, suggesting the ability of these plants to transform As into less toxic compounds. Moreover, the important role of As(V) sequestration on iron plaque on the root surface of Cyperaceae was confirmed. In this context, root washing with oxalic acid partially disrupted the iron plaque for the better release of arsenate.  相似文献   

12.
The acute toxicity of arsenic(III) and arsenic(V) alone and in combination to a cladoceran, Daphnia carinata, was studied in both cladoceran culture medium and natural water collected from a local suburban stream. As(III) was found to be more toxic than As(V) to Daphnia survival. The LC50 values for As(III), As(V), and As(III) + As(V) were 0.554, 1.499, and 0.692 mg l−1, respectively. Although various species of As, particularly As(III) and As(V) co-exist together in natural waters, the existing guidelines for water quality are based on individual As species. The results of this investigation suggest that As(III) and As(V) can interact either synergistically or additively resulting in an increase in the overall toxicity of the mixture compared to individual As species. Also, indigenous microorganisms in natural water may play a significant role in the transformation of As, thereby influencing the toxicity of As in receiving waters. This study clearly suggests that the joint action of As species should be considered in the development of water quality guidelines. To our knowledge this is the first study on the interactive effect of As(III) and As(V) to a cladoceran. Thus, this study suggests that these two species of As, when present together above 0.1 mg l−1 concentration, are toxic to fresh water invertebrates; therefore, pollution with these compounds may adversely affect natural ecosystems.  相似文献   

13.
The solution culture, paddy soil culture and the simulation experiments in the laboratory were conducted to clarify the interactions between selenium and phosphorus, and its effects on the growth and selenium accumulation in rice. Results revealed that a suitable supply of selenium could promote rice growth and excessive selenium could injure rice plant, causing lower biomass, especially in the roots. The supply of selenite could enhance the selenium contents of rice shoots and roots in solution culture and in soil culture. The selenium concentrations in roots were much higher than those in shoots supplied with the same rates of selenium and phosphorus. The interaction between selenium and phosphorus was evident. When the phosphorus supply increased to meet the needs of plant growth, phosphorus could promote absorption and accumulation of selenium in the shoots. If the phosphorus supply was excessive, phosphorus could inhibit the accumulation of selenium in the shoots at the lower selenite level (2 micromol l(-1)), but could not at the higher selenite level (10 micromol l(-1)). With the supply of phosphate increased, the selenium concentrations in the roots decreased significantly at both selenite levels. The presence of phosphate could decrease Se sorption on the soil surface and increase the selenium concentration in the soil solution. The concentrations of selenium in shoots and roots supplied with 0.08 g kg(-1) phosphorus were lower than those with no phosphorus supplied. With the increase of phosphorus added to 0.4 g kg(-1), the selenium concentration in shoots and roots increased. The effect of phosphorus on the concentration was statistically significant at all three selenium levels.  相似文献   

14.
The unexpected emergent discharge of high-arsenic wastewater into water environments results in significantly increased levels of arsenic in water; however, the species distribution of arsenic in sediments has never been reported before for such cases. This study focuses on an As pollution accident in the Dasha River, and uses sequential extraction procedures with deionized water, 1?mol·L-1 MgCl2 at pH= 8, 1?mol·L-1 NaH2PO4 at pH= 5, and 1?mol·L-1 HCl to investigate four binding phases of arsenic (i.e., water soluble, ion-exchangeable, strongly-bound, and precipitates) in sediments at different layers in different cross-sections along the river. The average ratio of arsenite (As(III)) to arsenate (As(V)) was found to decrease from 0.74:1 in river water to 0.48:1 in sediment, owing to its higher affinity toward As(V) than As(III). The content of arsenic in the sediments was relatively low and the maximum content was observed to be 36.3?mg·kg-1 for As(III) and 97.5?mg·kg-1 for As(V). As(III) and As(V) showed different binding phases in sediments, and the average fractions of these four species were determined to be 0.09, 0.11, 0.17, and 0.63 for As(III) and 0.03, 0.14, 0.63, and 0.20 for As(V), respectively. For all the sediment samples, the content of arsenic showed no relationship with the characteristics of the sediments such as the particle diameter, the content of organic carbon, Fe, and Mn, although a negative correlation with particle diameter was observed for the sediments in the uppermost 2-cm layer. The unexpected emergent As incident results in the high content of total arsenic in the surface sediment, which may be potential secondary source to the elevated As levels in surface water.  相似文献   

15.
温室盆栽试验研究结果表明,在潮土中钒含量高于30mg/kg,大豆幼苗地上部和地下部干物质量显著减少(>1%L.S.D);而在红壤中,钒含量高达75mg/kg,对大豆幼苗的生长也没有明显的影响(<5%L.S.D)。潮中易产生钒毒害的机理可能是因为对钒的吸附容量小,在土壤溶液中保持有较多量的有效钒供给大豆幼苗,并已当土壤pH变化时仍然保持对钒较高的吸附能力和供给能力。  相似文献   

16.
We examined arsenic (As) uptake by vegetable crops (amaranth, Amaranthus gangeticus, and silverbeet, Beta vulgaris) as affected by As speciation (AsIII and AsV) and their concentrations in nutrient solution. Amaranth and silverbeet were grown in a nutrient solution containing four levels of arsenate (AsV): 0, 1, 5, and 25 mg As/l and three levels of arsenite (AsIII): 0, 5, 10 mg As/l. Both AsV and AsIII are phytotoxic to these crops with the latter being five times more toxic. Amaranth treated with AsIII exhibited As toxicity symptoms within 48 h of exposure and was close to death within 1 week. However, AsV treatment did not show clear toxicity symptoms other than wilting and yield reduction at the highest dose rate of 25 mg AsV/l. The main mechanism used by vegetable crops to tolerate AsV is probably avoidance—limiting As transport to shoots and increasing As accumulation in the root system. When AsV was added to the nutrient solution, the uptake of As in shoots increased and, at the highest dose (25 mg AsV/l), 60 μg As/g DW (3.6 mg/kg FW) accumulated in the edible portion, which exceeds the WHO recommended limit for food stuffs (2 mg/kg FW) as the water contents of the crops were 94%. It is therefore important to determine the nature of the As species and their bio-accessibility. Iron treatment with 0.5 mg NaFe(III)EDTA/l dose decreased silverbeet As uptake by 45% given its affinity to bind As at the root surface or root rhizosphere and so restrict As translocation to the shoots.  相似文献   

17.
We have developed a novel microwave-assisted extraction method for determining the arsenic (As) speciation in soils that is based on extraction with phosphate solutions, including orthophosphoric acid, ammonium dihydrogen orthophosphate, and ammonium hydrogen orthophosphate. The highest extracting efficiency was obtained with 1 M ortho-phosphoric acid solution as the extractant, and this efficiency is associated with the pH of the extractant. Total As content and As species in the soil extracts were determined by inductively coupled plasma mass spectrometry (ICP-MS) alone and by the combined ion chromatography (IC) with ICP-MS, respectively. The proposed extraction procedure was applied to National Institute of Standards and Technology (NIST) standard reference material (SRM) 2711 (Montana soil) as well as to environmental soil samples collected from the agricultural lands of Bangladesh. As(V) was detected in all the soil samples, and As(III) was detected in nine soils of the 20. These results of extractable As testing indicate that the extraction of As species mainly depends on the composition of the soils. The As speciation results also indicate that As adsorption is highly dependent on the iron, aluminum, and manganese concentrations in the soil. The stability of As species in the extracts was also studied.  相似文献   

18.
Seasonal differences in the dissolved arsenic concentration and speciation in a contaminated urban waterway in northwest England have been determined using a coupled ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS) technique. Waters sampled in the vicinity of an industrial works during relatively dry conditions in April 2000 were found to contain total arsenic concentrations (As) of up to 132 g L–1, more than an order magnitude greater than the 4 g L–1 maximum found in December 2000. The difference in As between the April and December sampling periods is speculated to be largely due to the irregular anthropogenic supply of arsenic to the watercourse. For both sampling periods, the dissolved arsenic was exclusively inorganic in nature and had an As(V)/As ratio of between 0.6 and 0.8. Analysis of samples taken downstream of the industrial site, after the confluence with a relatively As-poor stream, revealed that As(III), As(V) and As concentrations were lower than would be expected from conservative mixing. The As(V)/As ratio was also observed to decrease markedly. The loss of arsenic from solution is thought to be due to adsorption on the iron oxyhydroxide-rich sediment observed to coat the riverbed downstream of the confluence. The reduction in the As(V)/As ratio is believed to be due to the more rapid adsorption of As(V) compared to that of As(III). Deviations from conservative behaviour were more marked during the relatively dry April 2000 sampling period and suggest the increased importance of adsorption processes controlling arsenic availability during this time.  相似文献   

19.
This article reports the synthesis of an efficient, low-cost material from maize powder to depollute arsenic-contaminated water. Arsenic is toxic for humans and other organisms even at low concentrations. The most well-known and severe case of arsenic poisoning through drinking water has been found in India and Bangladesh. Numerous inorganic materials have been tested for the removal of arsenic from water bodies over the last two decades. However, all such materials have several disadvantages such as unpredictable arsenic ion removal, high cost and the generation of toxic sludge that is often more difficult to manage. Alternatively, organic material from agricultural waste may be modified to enrich functional groups responsible for As sorption and, in turn, used to depollute contaminated waters. Here, Zea mays cob powder has been modified to remove arsenic species from water. Two modified materials were produced: an aminated maize powder and a thiolated maize powder. Amination was done using epichlorohydrin and dimethylamine. Thiolation was done using thioglycolic acids. Amination increased As (III) sorption from 70 to 75.8 % and As (V) sorption from 85 to 94.42 %, compared with unmodified maize powder. Thiolation increased As (III) sorption from 70 to 81.7 % and As (V) sorption from 85 to 90 %. Amination increased usability cycles from 3 to 5. Thiolation increased usability cycles from 3 to 6. The novel modified maize biosorbent has enough potential for the development of a low-cost technological pre-treatment step, prior to high-tech chemical treatments.  相似文献   

20.
作为一种新兴的纳米材料,羟基多壁碳纳米管(OH-MWCNTs)可能与其他污染物在水环境中共存,并进一步影响它们的毒性、输移和归趋。因此,评价碳纳米管存在下砷的毒性变化需要得到更多的关注。该试验探索了在不同pH值条件下,OH-MWCNTs诱导砷(As(III)和As(V))对水生生物大型蚤的毒性变化的潜在机制。发现了H2AsO3-和H2AsO4-是对大型蚤毒性最大的As(III)和As(V)。比较As(III)和As(V)的结果,发现pH值是影响砷毒性最重要的因素。此外,OH-MWCNTs影响砷对大型蚤毒性的结果表明,OH-MWCNTs的存在可以提高砷的毒性。通过吸附实验进一步研究了砷与OH-MWCNTs的相互作用。OH-MWCNTs 对As(V)吸附容量高于As(III)。总而言之, OH-MWCNTs对某些形态砷的吸附是解释砷毒性增强的可靠证据。
精选自Xinghao Wang, Ruijuan Qu, Ahmed A. Allam, Jamaan Ajarem, Zhongbo Wei, Zuoyao Wang. Impact of carbon nanotubes on the toxicity of inorganic arsenic [As(III) and As(V)] to Daphnia magna: the role of the certain arsenic species. Environmental Toxicology and Chemistry: Volume 35, Issue 7, pages 1852–1859, July 2016. DOI: 10.1002/etc.3340
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3340/full
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号