首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.  相似文献   

2.
ABSTRACT: Juvenile specimens of largemouth bass, bluegill, and channel catfish were tested to determine their ability to withstand abrupt temperature decreases simulating the environmental impact from a sudden shutdown of a nuclear reactor during the winter. Temperature reductions were administered over 2-hour and 24-hour periods to assess the importance of the rate of temperature change and hence the mitigative value of having a holding pond with a one-day retention time between the proposed cooling tower discharge and the receiving stream. Temperature decreases administered over a 2-hour period resulted in much greater mortality than decreases of the same magnitude administered over a 24-hour period. Thus, the value of a pond for mitigation from cold shock was substantiated. Results also indicated that adherence to the U.S. EPA temperature criteria for freshwater fish should provide adequate protection from cold shock.  相似文献   

3.
Abstract: Many arctic lakes freeze completely in winter. The few that retain unfrozen water for the entire winter period serve as overwintering fish habitat. In addition to serving as fish habitat, water in arctic lakes is needed for industrial and domestic use. Permits for water extraction seek to maximize water use without impacting dissolved oxygen (DO) levels and endangering fish habitat. The relationship between lake volume, winter DO budget, and extraction of water through pumping has historically not been well understood. A management model that could estimate end‐of‐winter DO would improve our understanding of the potential impacts of different management strategies. Using under‐ice DO measurements (November to April) taken from two natural lakes and one flooded gravel mine on the North Slope of Alaska, a physically based model was developed to predict end‐of‐winter DO concentration, water‐column DO profiles, and winter oxygen depletion rate in arctic lakes during periods of ice cover. Comparisons between the measured and model‐predicted oxygen profiles in the three study lakes suggest that the depth‐based DO modeling tool presented herein can be used to adequately predict the amount of DO available in arctic lakes throughout winter.  相似文献   

4.
The aim of this review is to assess the ethical implications of finfish aquaculture, regarding fish welfare and environmental aspects. The finfish aquaculture industry has grown substantially the last decades, both as a result of the over-fishing of wild fish populations, and because of the increasing consumer demand for fish meat. As the industry is growing, a significant amount of research on the subject is being conducted, monitoring the effects of aquaculture on the environment and on animal welfare. The areas of concern when it comes to animal welfare have here been divided into four different stages: breeding period; growth period; capturing and handling; and slaughter. Besides these stages, this report includes a chapter on the current evidence of fish sentience, since this issue is still being debated among biologists. However, most biologists are at present acknowledging the probability of fish being sentient creatures. Current aquaculture practices are affecting fish welfare during all four of the cited stages, both on physical and mental levels, as well as on the ability of fish to carry out natural behaviors. The effect fish farming has on the environment is here separated into five different categories: the decline of wild fish populations; waste and chemical discharge; loss of habitat; spreading of diseases; and invasion of exotic organisms. There is evidence of severe negative effects on the environment when looking at these five categories, even when considering the difficulty of studying environmental effects, due to the closely interacting variables. The ethical arguments and scientific evidences here reviewed have not all come to the same conclusions. Nevertheless, the general agreement is that current aquaculture practices are neither meeting the needs of fish nor environment. Thus, the obvious environmental and animal welfare aspects of finfish aquaculture make it hard to ethically defend a fish diet.  相似文献   

5.
6.
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.  相似文献   

7.
8.
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable.  相似文献   

9.
Increased salinity in spawning and nursery grounds in the Savannah River estuary was cited as the primary cause of a 97% decrease in adult striped bass (Morone saxatilis) and a concomitant 96% decrease in striped bass egg production. Restoration efforts focused on environmental remediation and stock enhancement have resulted in restored salinity patterns and increased egg and adult abundances. However, future water needs or harbor development may preclude further recovery by reducing freshwater inflow or increasing salinity intrusion. To assess the effect of potential changes in the salinity regime, we developed models relating discharge, tidal phase, and salinity to striped bass egg and early larval survival and re-cast these in a quantitative Bayesian belief network. The model indicated that a small upstream shift (≤1.67 km) in the salinity regime would have the least impact on striped bass early life history survival, whereas shifts >1.67 km would have progressively larger impacts, with a 8.33-km shift potentially reducing our estimated survival probability by >28%. Such an impact could have cumulative and long-term detrimental effects on the recovery of the Savannah River striped bass population. The available salinity data were collected during average and low flows, so our model represents some typical and some extreme conditions during a striped bass spawning season. Our model is a relatively simplistic, “first-order” attempt at evaluating potential effects of changes in the Savannah River estuarine salinity regime and points to areas of concern and potential future research.  相似文献   

10.
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005–2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.  相似文献   

11.
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera–Plecoptera–Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.  相似文献   

12.
The biodiversity of many Brazilian rivers is seriously threatened by industrial and municipal pollution, and Rio Paraiba do Sul, located between two major industrial centers is one example of this situation. A survey of the fish assemblage was conducted from October 1998 to September 1999 and the data were used to develop an index of biotic integrity (IBI). We sampled three zones in bracketing a large urban–industrial complex to evaluate water quality changes and the usefulness of the IBI as a monitoring tool. Water quality was classified as poor upstream of the effluent discharges, very poor near the discharges, and poor–fair downstream of the discharges, with this latter situation revealing the current biological capacity of the river. Physical and chemical habitat characteristics were also measured at each site to construct an independent environmental index to validate the IBI. The habitat and IBI indices were highly correlated, suggesting this IBI would be applicable to other large rivers in southeast Brazil.  相似文献   

13.
The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.  相似文献   

14.
15.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

16.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Ditches have been traditionally constructed to remove water from agricultural lands. Little attention has been placed on alternative ditch designs that are more stable and provide greater habitat diversity for wildlife and aquatic species. In 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to a two‐stage ditch (TSD) with small, adjacent floodplains to mimic a natural system. Cross section surveys, conducted pre‐ and post‐construction, generally indicate a stable channel with minor adjustments over time. Vegetation surveys showed differences in species composition and biomass between the slopes and the benches, with changes ongoing. Longitudinal surveys demonstrated a 12‐fold increase in depth variability. Fish habitat quality improved with well‐sorted gravel riffles and deeper pool habitat. The biological response to improved habitat quality was investigated using a Fish Index of Biological Integrity (FIBI). Our results show higher FIBI scores post‐construction with scores more similar to natural streams. In summary, the TSD demonstrated improvements in riparian and instream habitat quality and fish communities, which showed greater fish species richness, higher percentages of gravel spawning fish, and better FIBI scores. This type of management tool could benefit ditches in other regions where gradient and geology allow.  相似文献   

17.
ABSTRACT: The Umatilla River Basin Fisheries Restoration Plan was initiated in the early 1980s to mitigate salmonid losses caused by hydroelectric development and habitat degradation. The objectives are to enhance the abundance of endemic steelhead and reintroduce extirpated chinook and coho salmon. The project prompted collaborative effort among federal, state, and tribal agencies, and local water users. It has incorporated habitat restoration, flow enhancement, fish passage improvements, and population supplementation through artificial production. Water exchanges have successfully increased minimum flows during spring and fall migration. While flows remain depressed compared to historic conditions, there is potential for improved habitat, passage, and homing. The mean adult‐to‐adult return rate of hatchery‐reared steelhead exceeded replacement and that of the naturally‐spawning population. Although the smolt‐to‐adult survival rates of hatchery‐reared fish fluctuate, salmonid escapement has increased in recent years, permitting steelhead and spring chinook harvest. Enumeration of potential spawners and observed redds reveals an increase in natural production of all supplemented species. Comparison of hatchery‐reared and naturally‐spawning steelhead populations revealed differences in life history characteristics (in age composition and sex ratios) though run timing and genetic stock compositions of the two components of the populations have not differed. Sustained monitoring is needed to determine benefits of integrating habitat restoration and artificial production in restoring salmonid populations.  相似文献   

18.
19.
Abstract: The effects of water level fluctuations on fish and other aquatic biota, with an emphasis on winter water withdrawal in northern regions is reviewed. Water demands for population growth and development are adding pressure on water reserves, particularly when coupled with changing climatic conditions. Water level fluctuations can have adverse effects on the environment, most notably to hydrologic and biotic processes ranging in magnitude from the micro‐scale to landscape level. Water level management of lakes and reservoirs can affect all forms of aquatic biota. The severity of effect is dependant on the magnitude, duration and timing of the fluctuation, and the species exposed. In northwestern Canada and northern Alaska, water is withdrawn from water bodies to construct ice‐roads and other winter based developments. Biota in small, isolated water bodies are particularly sensitive to reductions in winter water levels. Water withdrawals can reduce the oxygen available to overwintering fish, while reduced water levels can reduce habitat for fish and furbearers, and freeze littoral areas killing plants, invertebrates, and fish eggs. Regulatory winter water withdrawal thresholds have been developed in the Northwest Territories and Alaska and continue to be refined as new data becomes available. The use of thresholds can help minimize or avoid negative impacts to the environment, particularly fish, from winter water withdrawal activities. Many different factors may influence the effect that winter water withdrawal has on a water body, such as basin shape, substrate and location. More research is warranted to better understand the linkages between anthropogenic and natural water level fluctuations and their combined effect on aquatic ecosystems. A general decision support system is proposed for minimizing risk to aquatic life from winter water withdrawal activities.  相似文献   

20.
Aquatic organotin pollution in Taiwan   总被引:1,自引:0,他引:1  
The current status of aquatic organotin pollution in Taiwan is reviewed. In freshwater sediments and biota, especially in rice-field related habitats, phenyltins (PTs) were dominant among the organotin pollutants, whereas butyltins (BTs) were usually predominant in marine environments. Among the marine habitats, contamination levels were found to be in the descending order of harbour and estuary>fish cultural site>coastal>offshore>coral reefs. Imposex snails were observed in all the sampling years (1990-2003). Meanwhile, organotin concentrations were greater in winter than those in summer, whereas proportions of PTs were much higher in summer than in winter. Due to the lack of continuous monitoring data, the effectiveness of the ban on TPT usage in agriculture in 1999 and the prohibition of TBT use on small boats in 2003 is still not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号