首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Geophysical methods have been proposed as technologies for non-invasively monitoring geochemical alteration in permeable reactive barriers (PRBs). We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in Fe0 columns using (a) Na2SO4, and (b) NaHCO3 plus CaCl2 mixture, solutions. At the influent interface where the reactions were most severe, a contrasting time-lapse electrical response was observed between the two columns. Solid phase analysis confirmed the formation of corrosion halos and increased mineralogical complexity in the corroded sections of the columns compared to the minimal/non-corroded sections. We attribute the contrasting time-lapse signatures to the differences in the electrical properties of the mineral phases formed within the two columns. While newly precipitated/transformed polarizable and semi-conductive iron oxides (mostly magnetite and green rust) increase the polarization and conductivity of the sulfate column, the decrease of both parameters in the bicarbonate column is attributed to the precipitation of non-polarizable and non-conductive calcite. Our results show that precipitate mineralogy is an important factor influencing the electrical properties of the corroded iron cores and must be considered if electrical geophysical methods are to be developed to monitor PRB barrier corrosion processes in situ.  相似文献   

2.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment.  相似文献   

3.
A thin-film continuous flow-through reactor was used to investigate reactions between aqueous Cr(VI) and two iron oxides, geothite and magnetite. Delayed effluent breakthrough of Cr(VI) indicated significant uptake by both oxides. Accumulation and remobilization of Cr(VI) depends on pH and the redox properties of the surface. For geothite the surface was quickly saturated and no further adsorption observed. Chromate anion (CrO42−) exhibited Langmuir-type adsorption. For magnetite, a significant slow steady-state rate of Cr(VI) uptake was observed. We propose two different mechanisms of chromium uptake: surface complexation of Cr(VI) species on geothite, and reductive precipitation of Cr(VI) at Fe(II) sites on magnetite.  相似文献   

4.
Microwave (MW) is applied to enhance perchloroethylene (PCE) or pentachlorophenol (PCP) removal using zero-valent iron (ZVI; Fe0) as the dielectric medium. ZVI has a much higher dielectric loss factor (39.5) than other media; it is capable of absorbing MW radiation rapidly to speed up the release of electrons, leading to rises of the ZVI particle surface temperature. If the MW power is continued, excessive electricity will accumulated inside ZVI particles, resulting in sparks. The results show that during the initial 5 sec (700 W), the linear aliphatic PCE has a faster decomposing rate than the ringed PCP (82.0% vs. 4.8%) because less energy is required for decomposing the linear-chlorine bond (90 kcal mol?1) than ring-chlorine bonds (95 kcal mol?1). Later, the removal rate for either PCE or PCP remains the same when the exposure time is between 5 and 60 sec. Without MW irradiation, linear PCE molecules have larger surface area to contact ZVI, and hence they have better removal efficiencies than PCP molecules. Using Fe0 as a microwave dielectric medium to treat PCE or PCP is a new and worthwhile treatment technology; it is environmentally friendly, and its use will eliminate the secondary pollution.
Implications Nanoscale iron particles are characterized by high surface-area-to-volume ratios, high specific surface area, and high surface reactivity. With a much higher dielectric loss factor, it is capable of absorbing MW radiation rapidly to speed up the release of electrons, leading to rise in temperature. The time needed to achieve a satisfactory treatment is also reduced, leading to significant saving of energy consumption to make this method cost-effective and also environmentally friendly for the industry to pursuit sustainable development.  相似文献   

5.
Aerosol particles were collected in the situation of the widespread dust suspension on 21 February 1991 at Qira in the southern edge of the Taklamakan Desert, western China. The collected particles were examined by a transmission electron microscope equipped with an energy-dispersive X-ray (EDX) analyzer in order to obtain the size and elemental composition of individual mineral particles.On the basis of EDX analyses for 386 particles, mineral particles were present in high number fractions (>99%) of particles in the radius range of 0.1–4 μm. Particles mainly composed of silicates comprised 76% of mineral particles. “Ca-rich” particles were detected in 7% of all the particles. Ca in the particles would be present not only as CaCO3 but also as an internal mixture of CaCO3 and CaSO4. Particles containing halite (NaCl) were detected in number proportions of about 10% and were mainly present in the radius range of 0.5 μm. Some halite particles would be modified by chemical reactions with sulfuric acid.  相似文献   

6.
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g−1 soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.  相似文献   

7.
Abstract

The sites contaminated with recalcitrant polycyclic aromatic hydrocarbons (PAHs) are serious environmental problems ubiquitously. Some PAHs have proven to be carcinogenic and hazardous. Therefore, the innovative PAH in situ remediation technologies have to be developed instantaneously. Recently, the nanoscale zero-va-lent iron (ZVI) particles have been successfully applied for dechlorination of organic pollutants in water, yet little research has investigated for the soil remediation so far. The objective in this work was to take advantage of nanoscale ZVI particles to remove PAHs in soil. The experimental factors such as reaction time, particle diameter and iron dosage and surface area were considered and optimized. From the results, both microscale and nanoscale ZVI were capable to remove the target compound. The higher removal efficiencies of nanoscale ZVI particles were obtained because the specific surface areas were about several dozens larger than that of commercially microscale ZVI particles. The optimal parameters were observed as 0.2 g iron/2 mL water in 60 min and 150 rpm by nanoscale ZVI. Additionally, the results proved that nanoscale ZVI particles are a promising technology for soil remediation and are encouraged in the near future environmental applications. Additionally, the empirical equation developed for pyrene removal efficiency provided the good explanation of reaction behavior. Ultimately, the calculated values by this equation were in a good agreement with the experimental data.  相似文献   

8.
Zero-valent iron (ZVI) permeable reactive barriers (PRBs) have become popular for the degradation of chlorinated ethenes (CEs) in groundwater. However, a knowledge gap exists pertaining to the longevity of ZVI. The present investigation addresses this situation by suggesting a numerical simulation model that is intended to be used in conjunction with field or column tests in order to describe long-term ZVI performance at individual sites. As ZVI aging processes are not yet completely understood and are still subject to research, we propose a phenomenological modelling technique instead of a common process-based approach. We describe ZVI aging by parameters that characterise the extent and rate of ZVI reactivity change depending on the propagation of the precipitation front through ZVI. We approximate degradation of CEs by pseudo-first order kinetics accounting for the formation of partially dechlorinated products, and describe ZVI reactivity change by scaling the degradation rate constants. Three independent modelling studies were carried out to test the suitability of the conceptual and numerical model to describe the observations of accelerated column tests. All three tests indicated that ZVI reactivity declined with an increasing number of exchanged pore volumes. Measured and modelled concentrations showed good agreement, thereby proving that resolving spatial as well as temporal changes in ZVI reactivity is reasonable.  相似文献   

9.
10.
During the transboundary transport of anthropogenic heavy metals by mineral particles providing reaction sites, the divalent metal salt PbSO4 can be converted to PbCO3 in the presence of water. We carried out laboratory experiments to study the transformation process under various conditions by incorporating test particles comprising CaCO3 of a particulate mineral component, PbSO4, and NaCl. After the immersion of PbSO4 particles in contact with CaCO3 particles in a water droplet, the conversion of PbSO4 into PbCO3 was confirmed by the change in morphology of the original particles to stick or needle form; the percentages of the chemical forms relative to the total Pb were determined by X-ray absorption near edge structure (XANES) analysis. Approximately 60–80% of PbSO4 was converted to PbCO3 after 24 h. A small amount of stick particles was detected when NaCl particles attached to PbSO4/CaCO3 particles were exposed to air with a relative humidity (RH) of 80–90% for 24 h. XANES measurements of the samples revealed that the molar percentage of PbCO3 relative to the total Pb content was 4%.Field experiments were also conducted to determine the chemical forms of the Pb particles during the Kosa (Asian dust storm) event. Samples were collected from two remote sites in Japan and Korea. The mass size distribution of Pb aerosols collected in Japan was bimodal with two peaks in the coarse mode; the enrichment factor of Pb suggested that its source was anthropogenic. Pb L3 edge XANES measurements of both samples indicated that they had similar shapes. These measurements also indicated that the major Pb components for the samples collected in Japan were PbO, PbSO4 PbCl2, and PbCO3, with molar percentages of 44%, 30%, 21%, and 5%, respectively. No significant differences were found between the component ratios of the samples collected in Japan and Korea, suggesting that definite transformation did not occur during the transport of the Kosa particles from Korea to Japan. On the basis of these observations, we postulate that the transformation process either occurred mainly before the particles arrived at Korea or did not take place after the particles left continental Asia.  相似文献   

11.
Although progress has been made toward understanding the surface chemistry of granular iron and the mechanisms through which it attenuates groundwater contaminants, potential long-term changes in the solute transport properties of granular iron media have until now received relatively little attention. As part of column investigations of alterations in the reactivity of granular iron, studies using tritiated water (3H(2)O) as a conservative and non-partitioning tracer were periodically conducted to independently isolate transport-related effects on performance from those more directly related to surface reactivity. Hydraulic residence time distributions (HRTDs) within each of six 39-cm columns exposed to bicarbonate solutions were obtained over the course of 1100 days of operation. First moment analyses of the data revealed generally modest increases in mean pore water velocity (v) over time, indicative of decreasing water-filled porosity. Gravimetric measurements provided independent estimates of water-filled porosity that were initially consistent with those obtained from 3H(2)O tracer tests, although at later times, porosities derived from gravimetric measurements deviated from the tracer test results owing to mineral precipitation. The combination of gravimetric measurements and 3H(2)O tracer studies furnished estimates of precipitated mineral mass; depending on the assumed identity of the predominant mineral phase(s), the porosity decrease associated with solute precipitation amounted to 6-24% of the initial porosity. The accumulation of mineral and gas phases led to the formation of regions of immobile water and increased spreading of the tracer pulse. Application of a dual-region transport model to the 3H(2)O breakthrough curves revealed that the immobile water-filled region increased from initially negligible values to amounts ranging between 3% and 14% of the total porosity in later periods of operation. For the aged columns, mobile-immobile mass transfer coefficients (k(mt)) were generally in the range of 0.1-1.0 day(-1) and reflected a slow exchange of 3H(2)O between the two regions. Additional model calculations incorporating sorption and reaction suggest that although changes in HRTD can have an appreciable effect on trichloroethylene (TCE) transformation, the effect is likely to be minor relative to that stemming from passivation of the granular iron surface.  相似文献   

12.
The combination of zero-valent iron (ZVI) with anaerobic sludge for enhancing reductive transformation and dechlorination of p-chloronitrobenzene (p-ClNB) was investigated in this study. p-ClNB was quickly reduced into p-chloroaniline (p-ClAn) and subsequently dechlorinated into aniline in the complex system, and the strengthening factor for pseudo-first-order transformation rate constant of p-ClNB (Q, k ZVI?+?sludge/(k sludge?+?k ZVI)) was above 3. The Q values for the different ZVI types with anaerobic sludge were as following: Reduced ZVI (RZVI)?>?Industrial ZVI?>?Nanoscale ZVI (NZVI). Thereinto, the aggregation of NZVI occurred, and its reaction activity declined. Furthermore, the increase of ZVI dosage promoted the p-ClNB transformation, but the p-ClAn dechlorination rate and Q value were not improved. With the anaerobic biomass increasing, the dechlorination rate of p-ClAn was significantly enhanced, and the Q value had positive relation with the mass ratio of anaerobic sludge to RZVI.  相似文献   

13.
The month-to-month variability of biomass and CaCO3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO3 per 1 m2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m?2) was noted at 1 m depth in September, and the highest CaCO3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO3 precipitation per 1 m2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.  相似文献   

14.

Introduction

This study relates to use of zerovalent iron to generate hydroxyl free radicals and undergo subsequent oxidation to destroy 4-nonylphenol (NP) by mild process in aqueous solution and activation of oxygen gas (O2) at room temperature. This technology is based on a novel oxidative mechanism mediated by zerovalent iron rather than commonly used reduction mechanism.

Materials and methods

A laboratory scale device consisting of a 250?ml pyrex serum vials fixed to a Vortex agitator was used. Different amounts of zerovalent iron powder (ZVI; 1, 10, and 30?g/l) at pH?4 and room temperature with bubbling of oxygen gas were investigated.

Results and conclusion

Experiments showed an observed degradation rate k (obs) directly proportional to the amount of iron. 4-Nonylphenol degradation reactions demonstrated first-order kinetics with a half-life of about 10.5?±?0.5 and 3.5?±?0.2?min when experiments were conducted at [ZVI]?=?1 and 30?g/l respectively. Three analytical techniques were employed to monitor 4-nonylphenol degradation and mineralization: (1) spectrofluorimetry; (2) high-performance liquid chromatography; (3) total organic carbon meter (TOC meter). Results showed a complete disappearance of 4-nonylphenol after 20?min of contact with ZVI. The intermediate by-products of the reaction were not identified but the disappearance of NP was monitored by the three above-mentioned techniques.  相似文献   

15.
Aerosol samples in PM10–2.0 and PM2.0 size fractions were collected on the platform of a metropolitan underground railway station in central Budapest. Individual aerosol particles were studied using atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectrometry and electron diffraction. The bulk aerosol samples were investigated by 57Fe Mössbauer spectroscopy, and they were subjected to chemical speciation analysis for Cr. The particles were classified into groups of iron oxides and iron, carbonates, silicates, quartz and carbonaceous debris. Electron micrographs showed that the Fe-rich particles in the PM2.0 size fraction typically consisted of aggregates of nano-sized hematite crystals that were randomly oriented, had round shapes and diameters of 5–15 nm. In addition to hematite, a minor fraction of the iron oxide particles also contained magnetite. In addition, the PM2.0-fraction particles typically had a rugged surface with layered or granular morphologies. Mössbauer spectroscopy suggested that hematite was a major Fe-bearing species in the PM10–2.0 size fraction; its mass contribution to the Fe was 36%. Further constituents (ferrite, carbides and FeOOH) were also identified. The water soluble amounts of Cr for the underground railway station and city center were similar. In the PM10–2.0 size fraction, practically all dissolved Cr had an oxidation state of three, which corresponds to ambient conditions. In the PM2.0 size fraction, however, approximately 7% of the dissolved Cr was present as Cr(VI), which was different from that for the urban aerosol. It is suggested that the increased adverse health effects of aerosol particles in metros with respect to ambient outdoor particles is linked to the differences in the oxidation states, surface properties or morphologies.  相似文献   

16.
Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.  相似文献   

17.
Mössbauer spectroscopy was applied to analyze the iron compounds present in atmospheric aerosol. As a significant part of air pollution, especially in winter months, iron appeared in the form of iron sulfides (FeS2, FeS and Fe1−xS), which were products of coal combustion. Also, iron oxyhydroxides and iron oxides, mostly α-Fe2O3 (bulk) and in the form of ultra fine particles in superparamagnetic state were observed. The concentration of iron in atmospheric air was calculated from the experimental spectra. Seasonal variations of iron concentration in atmospheric air measured over twenty years in the mountain region of Poland are discussed.  相似文献   

18.
The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K+ and NO3 ? and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO3 solution was replaced with deionized water to flush the columns, more K+ and NO3 ? were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K+ and NO3 ? from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.  相似文献   

19.
Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content.  相似文献   

20.
A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L?1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L?1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91–99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L?1 of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples.

Implications: Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H2O2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91–99% of heavy metals removal. The coupled coagulation–oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号