首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the acute impact of trinitrotoluene (TNT) contamination of soil on the aerobic bacterial community composition and function. The contamination of the environment with explosive residues presents a serious problem at sites across the world, with the highly toxic compound TNT being the most widespread explosive contaminant. We investigated the acute impact of trinitrotoluene (TNT) contamination of soil on the aerobic bacterial community composition and function. Soil microcosms were amended with a range of concentrations of TNT for 30 days. A polyphasic approach encompassing culture-independent molecular analysis by DGGE, community-level physiological profiling (CLPP) and cell enumeration revealed that the amendment of soils with TNT resulted in a shift from slower growing k-strategists towards faster growing r-strategists. Pseudomonads became prevalent at high concentrations of TNT. Pollution induced community tolerance (PICT) was observed as TNT concentrations increased. Chemical analyses revealed that TNT was reduced to its amino derivatives, products of reductive microbial transformation. The transformation to amino derivatives decreased at high concentrations of TNT, indicative of inhibition of microbial TNT transformation.  相似文献   

2.
Muckian L  Grant R  Doyle E  Clipson N 《Chemosphere》2007,68(8):1535-1541
Bacterial community structure was examined in polycyclic aromatic hydrocarbon (PAH) contaminated soil taken from a timber treatment facility in southern Ireland. Profiles of soil bacterial communities were generated using a molecular fingerprinting technique, terminal restriction fragment length polymorphism (TRFLP), and results were interpreted using sophisticated multivariate statistical analysis. Findings suggested that there was a correlation between PAH structure and bacterial community composition. Initial characterisation of soil from the timber treatment facility indicated that PAH contamination was unevenly distributed across the site. Bacterial community composition was correlated with the type of PAH present, with microbial community structure associated with soil contaminated with two-ringed PAHs only being distinctly different to communities in soils contaminated with multi-component PAH mixtures. Typically the number of bacterial ribotypes detected in samples did not appear to be adversely affected by the level of contamination.  相似文献   

3.
Frische T  Höper H 《Chemosphere》2003,50(3):415-427
In situ bioremediation is increasingly being discussed as a useful strategy for cleaning up contaminated soils. Compared to established ex situ procedures, meaningful and reliable approaches for monitoring the remediation processes and their efficiency are of special importance. The subject of this study was the significance of two bioassays for monitoring purposes. The work was performed within the scope of a research project on the in situ bioremediation of topsoil contaminated with 2,4,6-trinitrotoluene (TNT). To evaluate changes within different experimental fields during a 17-month remediation period, the results of soil microbial assays and luminescent bacteria assays were compared with chemical monitoring data. The luminescent bacteria assays showed a significant reduction of the water-soluble soil toxicants in the treated fields. This bioassay proved to be a sensitive screening indicator of toxicity and may effectively aid the ecotoxicological interpretation of chemical monitoring data. Microbial biomass (C(mic)), the metabolic quotient (qCO2), and the ratio of microbial to organic carbon (C(mic)/C(org)) showed a highly significant correlation with total concentrations of TNT in the soil. But, in contrast to luminescent bacteria assays, this approach did not reveal any recovery of the soil at the end of the remediation period. There is clear evidence for persistent adverse effects of chronic TNT contamination on the site-specific microbial community and the local carbon cycle in the soil. The study clearly exhibits the differences between, as well as the complementary value of both bioassay approaches for monitoring short-term and long-term effects of soil contamination and the efficiency of remediation.  相似文献   

4.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR–DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.  相似文献   

5.
Song D  Katayama A 《Chemosphere》2005,59(3):305-314
A natural attenuation experiment was carried out using a lysimeter for 308 days after contaminating the subsoil with hydrocarbons (HCs) and the changes in the structures of microbial community in the hydrocarbon (HC) contaminated subsoil were monitored by quinone profile analysis. The residues of HCs remained for 217 days in the subsoil after the contamination. The amount of total quinones (TQ), an indicator of microbial biomass, significantly increased in the HC contaminated subsoil for 217 days, comparing with that of the background subsoil or the subsoil before the addition of HCs. The major quinone species and the quinone composition, indicators of community structure, were significantly different between the HC contaminated soil and the background soil for 217 days. The major increased quinine species in the HC contaminated soil were menaquinone-8(H4), menaquinone-9(H2) and ubiquinone-9, indicating the propagation of Gram-positive bacteria with high guanine and cytosine content and gamma-subclass of Proteobacteria and fungi. There was no significant difference in the diversity of the quinone species (DQ), an indicator of taxonomic diversity of microbial community, except for the decrease in DQ in the shallow subsoil after 35 days when a high concentration of HCs was detected. After 308 days when the HCs in the subsoil disappeared, TQ returned to the level of the background soil, and no significant difference in quinone composition were observed between the HC contaminated soil and the background soil. The results suggested that respiratory quinones are effective biomarkers for characterizing the temporal changes of microbial community in the HC contaminated subsoil.  相似文献   

6.
应用DNA随机扩增多态性(RAPD)分子标记技术研究了光合细菌(PSB)对Cd、Pb及呋喃丹污染土壤的微生物群落DNA序列多样性的影响.结果表明,Cd、Pb及呋喃丹单一污染或3者复合污染土壤的微生物群落DNA序列的丰富度相对对照土样(S0)都有不同程度的增加,受Cd、Pb或呋哺丹污染,可能会引起土壤微生物群落DNA序列...  相似文献   

7.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

8.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

9.
Labud V  Garcia C  Hernandez T 《Chemosphere》2007,66(10):1863-1871
The aim of this work was to ascertain the effects of different types of hydrocarbon pollution on soil microbial properties and the influence of a soil's characteristics on these effects. For this, toxicity bioassays and microbiological and biochemical parameters were studied in two soils (one sandy and one clayey) contaminated at a loading rate of 5% and 10% with three types of hydrocarbon (diesel oil, gasoline and crude petroleum) differing in their volatilisation potential and toxic substance content. Soils were maintained under controlled conditions (50-70% water holding capacity, and room temperature) for six months and several microbiological and toxicity parameters were monitored 1, 60, 120 and 180 days after contamination. The toxic effects of hydrocarbon contamination were greater in the sandy soil. Hydrocarbons inhibited microbial biomass, the greatest negative effect being observed in the gasoline-polluted sandy soil. In both soils crude petroleum and diesel oil contamination increased microbial respiration, while gasoline had little effect on this parameter, especially in the sandy soil. In general, gasoline had the highest inhibitory effect on the hydrolase activities involved in N, P or C cycles in both soils. All contaminants inhibited hydrolase activities in the sandy soil, while in the clayey soil diesel oil stimulated enzyme activity, particularly at the higher concentration. In both soils, a phytotoxic effect on barley and ryegrass seed germination was observed in the contaminated soils, particularly in those contaminated with diesel or petroleum.  相似文献   

10.
Plants can be used for effective and economical remediation of soil provided they are tolerant or resistant to contaminants. This study was conducted to determine effects of 2,4,6-trinitrotoluene (TNT) on growth and development of smooth bromegrass and tall fescue. Seeds of both species were grown in contaminated and non-contaminated soil mixed at ratios to obtain a range of concentrations and also in non-contaminated soil underlain by contaminated and non-contaminated soil mix. Germination, shoot and root dry weight, root length and area were measured. Germination and height of both species decreased with increasing TNT concentration. Shoot dry weight from tall fescue was 50% greater than smooth bromegrass at a given TNT concentration. Root length, area and dry weight of both species decreased with increasing TNT concentration. Root area and dry weight were greater for smooth bromegrass compared to tall fescue. This research indicates tall fescue and smooth bromegrass can germinate and grow in soils with concentrations less than 31 and 24 mg TNT l(-1), respectively.  相似文献   

11.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

12.
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.  相似文献   

13.
Four bioreactor designs were performed to evaluate the level of incorporation of 14C-labeled 2,4,6-trinitrotoluene (TNT) and metabolites into the organic soil matrix of different anaerobically treated contaminated soils. The contaminated soils were amended with molasses slivers (80:20% per weight) as auxiliary substrate to enhance microbial activity. After 5 weeks (bioreactors 1 and 2), 8 weeks (bioreactor 3) and 12 weeks (bioreactor 4) of anaerobic incubation, we determined 41%, 58%, 72%, and 54%, respectively, of the initially applied radioactivity immobilized in various soil fractions. After alkaline hydrolyses of the solvent-extracted soils, low quantities of radiolabel were found in the humic and fulvic acid fractions, whereas the bulk of 14C activity was found to be strongly bound to the humin fraction (solid soil residues). The amounts of solvent extractable radioactivity were 53%, 40%, 16%, and 29% for bioreactors 1, 2, 3, and 4, respectively. The level of TNT transformation at the end of the experiments was within 90-94%. Regarding the results presented in this study, we can assume that there is the possibility of high incorporation levels of TNT metabolites into the soil organic matrix mediated by microbial cometabolism under strictly anoxic conditions.  相似文献   

14.
2,4,6-Trinitrotoluene (TNT) is toxic to soil invertebrates, but little is known about its toxicokinetic behavior in soil. Tissue residue analysis was used to evaluate whether the presence of TNT and its reduced metabolites in soil invertebrates was due to uptake of these compounds from the soil into the organism, or due to microbial transformation of TNT associated with the organism followed by uptake. Adult white potworms (Enchytraeus albidus) were exposed to non-lethal concentrations of TNT in amended artificial soil for 21 d, or to TNT in solution for 20 h. Soil exposure studies confirmed earlier reports that TNT was transformed in enchytraeids in vivo to 2- and 4-aminodinitrotoluenes. However, enchytraeid exposure to TNT in solution led to the additional presence of 2,4-diaminonitrotoluene as well as 2- and 4- hydroxyamino-dinitrotoluenes and azoxy-compounds, suggesting that TNT can be metabolized in vivo in the absence of soil. Incubation of unexposed enchytraeid homogenates with TNT led to a protein-dependent appearance of these metabolites in vitro after > or =16 h incubation. Cellular fractionation studies indicated that most of this activity resided in the 8000 x g pellet, and was completely inhibited by broad-spectrum antibiotics. These studies demonstrate that enchytraeids can transform TNT in vivo and in vitro, at least in part, by bacteria associated with the host organism.  相似文献   

15.
In laboratory experiments the mineralisation of 14C-labelled 1,2,4-trichlorobenzene (1,2,4-TCB) in soils was studied by direct measurement of the evolved 14CO2. The degradation capacity of the indigenous microbial population was investigated in an agricultural soil and in a soil from a contaminated site. Very low mineralisation of 1% within 23 days was measured in the agricultural soil. Whereas in the soil from the contaminated site the mineralisation occurred very fast and in high rates; up to 62% of the initially applied amount of 1,2,4-TCB were mineralised within 23 days. The transfer of the adapted microbial population into the agricultural soil significantly enhanced the mineralisation of 1,2,4-TCB in this soil, reflecting, that the transferred microbial population survived and maintained its degradation ability in the new microbial ecosystem. Additional nutrition sources ((NH4)2HPO4) increased the mineralisation rates in the first days significantly in the contaminated soil. In the soil from the contaminated site high amounts of non extractable 14C-residues were formed.  相似文献   

16.
Potential contamination at ex-industrial sites means that, prior to change of use, it will be necessary to quantify the extent of risks to potential receptors. To assess ecological hazards, it is often suggested to use biological assessment to augment chemical analyses. Here we investigate the potential of a commonly recommended bioassay, the earthworm reproduction test, to assess the status of urban contaminated soils. Sample points at all study sites had contaminant concentrations above the Dutch soil criteria Target Values. In some cases, the relevant Intervention Values were exceeded. Earthworm survival at most points was high, but reproduction differed significantly in soil from separate patches on the same site. When the interrelationships between soil parameters and reproduction were studied, it was not possible to create a good model of site soil toxicity based on single or even multiple chemical measurements of the soils. We thus conclude that chemical analysis alone is not sufficient to characterize soil quality and confirms the value of biological assays for risk assessment of potentially contaminated soils.  相似文献   

17.
One of the major challenges in developing an effective phytoremediation technology for 2,4,6-trinitrotoluene (TNT) contaminated soils is limited plant uptake resulting from low solubility of TNT. The effectiveness of urea as a solubilizing agent in increasing plant uptake of TNT in hydroponic systems has been documented. Our preliminary greenhouse experiments using urea were also very promising, but further characterization of the performance of urea in highly-complex soil-solution was necessary. The present study investigated the natural retention capacity of four chemically variant soils and optimized the factors influencing the effectiveness of urea in enhancing TNT solubility in the soil solutions. Results show that the extent of TNT sorption and desorption varies with the soil properties, and is mainly dependent on soil organic matter (SOM) content. Hysteretic desorption of TNT in all tested soils suggests irreversible sorption of TNT and indicates the need of using an extractant to increase the release of TNT in soil solutions. Urea significantly (p < 0.0001) enhanced TNT extraction from all soils, by increasing its solubility at the solid/liquid interface. Soil organic matter content and urea application rates showed significant effects, whereas pH did not exert any significant effect on urea catalysis of TNT extraction from soil. The optimum urea application rates (125 or 350 mg kg−1) for maximizing TNT extraction were within the limits set by the agronomic fertilizer-N rates used for major agricultural crops. The data obtained from this batch study will facilitate the optimization of a chemically-catalyzed phytoremediation model for cleaning up TNT-contaminated soils.  相似文献   

18.
DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) and its principle metabolites, DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) and DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) are widespread environmental contaminants but little information is available concerning their effects on non-target microflora (especially microalgae and cyanobacteria) and their activities in long-term contaminated soils. For this reason a long-term DDT-contaminated soil was screened for DDT residues and toxicity to microorganisms (bacteria, fungi, algae), microbial biomass and dehydrogenase activity. Also, five pure cultures isolated from various sites (two unicellular green algae and three dinitrogen-fixing cyanobacteria) were tested for their ability to metabolise DDT. Viable counts of bacteria and algae declined with increasing DDT contamination while fungal counts, microbial biomass and dehydrogenase activity increased in medium-level contaminated soil (27 mg DDT residues kg(-1) soil). All the tested parameters were greatly inhibited in high-level contaminated soil (34 mg DDT residues kg(-1) soil). Species composition of algae and cyanobacteria was altered in contaminated soils and sensitive species were eliminated in the medium and high contaminated soils suggesting that these organisms could be useful as bioindicators of pollution. Microbial biomass and dehydrogenase activity may not serve as good bioindicators of pollution since these parameters were potentially influenced by the increase in fungal (probably DDT resistant) counts. All the tested algal species metabolised DDT to DDE and DDD; however, transformation to DDD was more significant in the case of dinitrogen-fixing cyanobacteria.  相似文献   

19.
Arienzo M 《Chemosphere》2000,40(4):331-337
The degradation of 2,4,6-trinitrotoluene was examined in pure water and contaminated soil slurry using calcium peroxide as a source of solid hydrogen peroxide and oxygen. The extent of TNT oxidation was compared with that obtained by using hydrated lime, which is normally generated by slurrying CaO2 in water and contained in CaO2 technical formulation (approximately 50%, w/w). Complete TNT degradation occurred between 280 min, 0.1% CaO2/Ca(OH)2 and 20 min, 1% CaO2/Ca(OH)2. A large part of the generated oxidation products, 80-90%, were absorbed on the solid calcium hydroxide, whereas the remaining 10-20% was detected in solution until 48 h. Removal of nitro groups was extremely effective in CaO2 slurry, where all the nitrogen (3 mol per mol of TNT) was removed from TNT within 240 min. Respect to calcium hydroxide, the peroxy compound liberated H2O2 in solution, 370 mg l-1 at 0.2% CaO2, w/v, which then decomposed within 480 min. Most of the 14C-TNT was retained more strongly on the calcium hydroxide generated by slurrying CaO2. This pool remained adsorbed on the solid until pH dropped below 5.8. The treatment of a contaminated soil slurry, 700 mg TNT kg-1, reduced CH3CN extractable TNT below 20 mg kg-1 at very low concentration of CaO2/Ca(OH)2, approximately 0.2%, w/w. Both oxidants do not lead to soil sterilization as the phosphorus added to neutralize the pH serves as a source of nutrient for the soil biomass.  相似文献   

20.
Phytoremediation is of great interest to remediate soil contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT). The ability of 4 agronomic plants (maize, soybean, wheat and rice) to take up these explosives and their fate in plants were investigated. Plants were grown for 42 days on soil contaminated with [(14)C]RDX or [(14)C]TNT. Then, each part was analyzed for its radioactivity content and the percentage of bound and soluble residues was determined following extractions. Extracts were analyzed by radio-HPLC. More than 80% of uptaken RDX was translocated to aerial tissues, up to 64.5 mgg(-1) of RDX. By contrast, TNT was little translocated to leaves since less than 25% of uptaken TNT was accumulated in aerial parts. Concentrations of TNT residues were 20 times lower than for RDX uptake. TNT was highly metabolized to bound residues (more than 50% of radioactivity) whereas RDX was mainly found in its parent form in aerial parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号