首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the re-evaluation and revision of a number of design floods, several embankment overtopping protection systems have been developed and a common technique is the construction of a stepped spillway on the downstream slope. For such moderate slope stepped channels, detailed air–water flow measurements were performed in a large facility with a focus on the rate of energy dissipation, flow resistance, air–water interfacial areas and re-aeration rates. Past and present experimental results showed a significant aeration of the flow. The median dimensionless residual head was about 3 × dc for the 21.8° sloping chute and smaller than that for flatter slopes (θ = 3.4° and 15.9°). The flow resistance results yielded an equivalent Darcy friction factor of about 0.25 implying a larger flow resistance for the 21.8° slope angle than for smaller slope angles. The re-aeration rate was deduced from the integration of the mass transfer equation using measured air–water interfacial areas and air–water flow velocities. The results suggested an increasing re-aeration rate with increasing rate of energy dissipation. The stepped invert contributed to intense turbulence production, free-surface aeration and large interfacial areas. The experimental data showed however some distinctive seesaw pattern in the longitudinal distribution of air–water flow properties with a wave length of about two step cavities. While these may be caused by the interactions between successive adjacent step cavities and their interference with the free-surface, the existence of such “instabilities” implies that the traditional concept of normal flow might not exist in skimming flows above moderate-slope stepped spillways.  相似文献   

2.
We present and discuss the results of a comprehensive study addressing the non-aerated region of the skimming flow in steep stepped spillways. Although flows in stepped spillways are usually characterized by high air concentrations concomitant with high rates of energy dissipation, the non-aerated region becomes important in small dams and/or spillways with high specific discharges. A relatively large physical model of such spillway was used to acquire data on flow velocities and water levels and, then, well-resolved numerical simulations were performed with a commercial code to reproduce those experimental conditions. The numerical runs benefited from the ability of using multi-block grids in a Cartesian coordinate system, from capturing the free surface with the TruVOF method embedded in the code, and from the use of two turbulence models: the k-e{k{-}\varepsilon} and the RNGk-e{k{-}\varepsilon} models. Numerical results are in good agreement with the experimental data corresponding to three volumetric flow rates in terms of the time-averaged velocities measured at diverse steps in the spillway, and they are in very satisfactory agreement for water levels along the spillway. In addition, the numerical results provide information on the turbulence statistics of the flow. This work also discusses important aspects of the flow, such as the values of the exponents of the power-law velocity profiles, and the characteristics of the development of the boundary layer in the spillway.  相似文献   

3.
The study of stepped spillways in laboratory scales has been essentially focused on two separated sub-regimes within skimming flow. In this paper we investigate the appearance of an unclassified alternating skimming flow regime in a 0.5 m wide stepped spillway which does not fit on these earlier definitions, and which does not occur in a 0.3 m wide spillway. Our aim is to explain the genesis of this unclassified flow which is visualised in the physical stepped spillway, by using 3D numerical modelling. Flow depths and velocities are measured using an ultrasonic sensor and Bubble Image Velocimetry in the wider flume (0.5 m). The numerical model is validated with the experimental data from the 0.5 m wide spillway. After validation, the channel width of the same numerical model is reduced to 0.3 m wide spillway in order to characterise (compare) the case without (with) alternating skimming flow. Both cases are solved using Reynolds-Averaged Navier–Stokes equations together with the Volume-of-Fluid technique and SST k-\(\omega\) turbulence model. The experimental results reveal that the alternating skimming flow regime is characterised by an evident seesaw pattern of flow properties over consecutive steps. In turn, the numerical modelling clarified that this seesaw pattern is due to the presence of a complex system of cross waves along the spillway. These cross waves are also responsible for a mass and momentum exchange in the transversal direction and for the formation of the alternating skimming flow in the spillway.  相似文献   

4.
The present paper explores the characteristics of turbulent flow and drag over two artificial 2-D forward-facing waveform structures with two different stoss side slopes of $50^{\circ }$ and $90^{\circ },$ respectively. Both structures possessed a common slanted lee side slope of $6^{\circ }.$ Flume experiments were conducted at the Fluvial Mechanics Laboratory of Indian Statistical Institute, Kolkata. The velocity data were analyzed to identify the spatial changes in turbulent flow addressing the flow separation region with recirculating eddy, the Reynolds stresses, the turbulent events associated with burst-sweep cycles and the drag over two upstream-facing bedforms for Reynolds number $Re_h=1.44\times 10^5.$ The divergence at the stoss side slope between the two structures revealed significant changes in the mean flow and turbulence. Comparison showed that during the flood-tide condition there was no flow separation region on the gentle lee side of the structure with smaller slope at the stoss side, while for the other structure with vertical stoss side slope a thick flow separation region with recirculating eddy was observed at the gentle lee side just downstream of the crest. The recirculating eddy induced on the lee-side had a strong influence on the resistance that the structure exerts to the flow due to loss of energy through turbulence. In contrast, a great amount of reduction in drag was observed in the case of smaller stoss side sloped structure as there was no flow separation. The quadrant analysis was also used to highlight the turbulent event evolution along the bed form structures under flood-tide conditions.  相似文献   

5.
Dust emissions from stockpiles surfaces are often estimated applying mathematical models such as the widely used model proposed by the USEPA. It employs specific emission factors, which are based on the fluid flow patterns over the near surface. But, some of the emitted dust particles settle downstream the pile and can usually be re-emitted which creates a secondary source. The emission from the ground surface around a pile is actually not accounted for by the USEPA model but the method, based on the wind exposure and a reconstruction from different sources defined by the same wind exposure, is relevant. This work aims to quantify the contribution of dust re-emission from the areas surrounding the piles in the total emission of an open storage yard. Three angles of incidence of the incoming wind flow are investigated ( $30^{\circ }, 60^{\circ }$ and $90^{\circ }$ ). Results of friction velocity from numerical modelling of fluid dynamics were used in the USEPA model to determine dust emission. It was found that as the wind velocity increases, the contribution of particles re-emission from the ground area around the pile in the total emission also increases. The dust emission from the pile surface is higher for piles oriented $30^{\circ }$ to the wind direction. On the other hand, considering the ground area around the pile, the $60^{\circ }$ configuration is responsible for higher emission rates (up to 67 %). The global emissions assumed a minimum value for the piles oriented perpendicular to the wind direction for all wind velocity investigated.  相似文献   

6.
The propagation of density current under different boundary conditions is investigated using high resolution direct numerical simulations (DNS). A revised Kleiser and Schumann influence-matrix method is used to treat the general Robin type velocity boundary conditions and the related “tau” error corrections in the numerical simulations. Comparison of the simulation results reveals that the boundary conditions change the turbulent flow field and therefore the propagation of the front. This paper mainly focuses on the effects of boundary conditions and initial depth of the dense fluid. The differences in energy dissipation and overall front development in wall-bounded and open channels are examined. Through DNS simulations, it is evident that with the decrease of initial release depth ratio ( $D/H$ ), the effect of the top boundary becomes less important. In wall-bounded channels, there are three distinctive layers in the vertical distribution of energy dissipation corresponding to the contributions from bottom wall, interface, and top wall, respectively. In open channels, there are only two layers with the top one missing due to the shear free nature of the boundary. It is found that the energy dissipation distribution in the bottom layer is similar for cases with the same $D/H$ ratio regardless the top boundary condition. The simulation results also reveal that for low Reynolds number cases, the energy change due to concentration diffusion cannot be neglected in the energy budget. To reflect the real dynamics of density current, the dimensionless Froude number and Reynolds number should be defined using the release depth $D$ as the length scale.  相似文献   

7.
This paper investigates, experimentally and numerically, the shear velocity distribution along a single transverse dune and along two closely spaced dunes, analyzing the flow effects of one dune upon the other. The paper focuses on two-dimensional models simulating transverse sand dunes. The shape of the two pile geometries studied is described by sinusoidal curves, one having a maximum slope of $32^{\circ }$ and the other $27.6^{\circ }$ , with leeward flow separation. The tests were carried out for two undisturbed wind speeds and the experimental data obtained through wind-tunnel modeling encompass flow visualization and shear-velocity results. A generally good agreement is observed between the experimental measurements and computational results. From the inquiry between shear velocity distributions and published eroded contours for the same geometries, it appears the Bagnold’s approach is insufficient in the prediction of threshold conditions in wake flows formed in the dune’s leeward side.  相似文献   

8.
Air–water flows at hydraulic structures are commonly observed and called white waters. The free-surface aeration is characterised by some intense exchanges of air and water leading to complex air–water structures including some clustering. The number and properties of clusters may provide some measure of the level of particle-turbulence and particle–particle interactions in the high-velocity air–water flows. Herein a re-analysis of air–water clusters was applied to a highly aerated free-surface flow data set (Chanson and Carosi, Exp Fluids 42:385–401, 2007). A two-dimensional cluster analysis was introduced combining a longitudinal clustering criterion based on near-wake effect and a side-by-side particle detection method. The results highlighted a significant number of clustered particles in the high-velocity free-surface flows. The number of bubble/droplet clusters per second and the percentage of clustered particles were significantly larger using the two-dimensional cluster analysis than those derived from earlier longitudinal detection techniques only. A number of large cluster structures were further detected. The results illustrated the complex interactions between entrained air and turbulent structures in skimming flow on a stepped spillway, and the cluster detection method may apply to other highly aerated free-surface flows.  相似文献   

9.
When modeling atmospheric boundary layer flow over rough landscapes, surface fluxes of flow quantities (momentum, temperature, etc.) can be described with equilibrium logarithmic law expressions, all of which require specification of a roughness length that is, physically, the elevation at which the flow quantity equals its surface value. In high Reynolds number flows, such as the atmospheric boundary layer, inertial forces associated with turbulent eddy motions are responsible for surface momentum fluxes (form, or pressure drag). Surface scalar fluxes, on the other hand, occur exclusively via diffusion in the immediate vicinity of the topography—the interfacial region—before being advected by turbulent eddy motions into the bulk of the flow. Owing to this difference in surface transfer mechanism, the passive scalar roughness length, $z_{0S}$ , is known to be less than the momentum roughness length, $z_0$ . In this work, classical relations are used to specify $z_{0S}$ during large-eddy simulation of atmospheric boundary layer flow over aerodynamically rough, synthetic, fractal topographies which exhibit power-law height energy spectrum, $E_h (k) \sim k^{\beta _s}$ , where $\beta _s$ is a (predefined) spectral exponent. These topographies are convenient since they resemble natural landscapes and $\beta _s$ can be varied to change the topography’s aerodynamic roughness (the study considers a suite of topographies with $-2.4 \le \beta _s \le -1.2$ , where $-2.4$ and $-1.2$ are the “most smooth” and “most rough” cases, respectively, corresponding with roughness Reynolds number, $Re_0 \approx 10$ and $300$ ). It is often assumed that $z_{0S}/z_{0} \approx 10^{-1}$ for all $Re_0$ . But results from this work show that the roughness length ratio, $z_{0S}/z_{0}$ , depends strongly on $Re_0$ , ranging between $10^{-3}$ and $10^{-1}$ .  相似文献   

10.
In this paper, semi-analytical expressions of the effective hydraulic conductivity ( $K^{E})$ and macrodispersivity ( $\alpha ^{E})$ for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of $K^{E}$ and $\alpha ^{E}$ on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal $K^{E}$ and $\alpha ^{E}$ are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical $K^{E}$ and $\alpha ^{E}$ are found to be reduced slightly when the density factor ( $\gamma $ ) is less than 0.01, whereas significant decreases occur when $\gamma $ exceeds 0.01. Of note, the variation of $K^{E}$ and $\alpha ^{E}$ is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.  相似文献   

11.
A comprehensive experimental investigation for an inclined ( $60^{\circ }$ to vertical) dense jet in perpendicular crossflow—with a three-dimensional trajectory—is reported. The detailed tracer concentration field in the vertical cross-section of the bent-over jet is measured by the laser-induced fluorescence technique for a wide range of jet densimetric Froude number $Fr$ and ambient to jet velocity ratios $U_r$ . The jet trajectory and dilution determined from a large number of cross-sectional scalar fields are interpreted by the Lagrangian model over the entire range of jet-dominated to crossflow-dominated regimes. The mixing during the ascent phase of the dense jet resembles that of an advected jet or line puff and changes to a negatively buoyant thermal on descent. It is found that the mixing behavior is governed by a crossflow Froude number $\mathbf{F} = U_r Fr$ . For $\mathbf{F} < 0.8$ , the mixing is jet-dominated and governed by shear entrainment; significant detrainment occurs and the maximum height of rise $Z_{max}$ is under-predicted as in the case of a dense jet in stagnant fluid. While the jet trajectory in the horizontal momentum plane is well-predicted, the measurements indicate a greater rise and slower descent. For $\mathbf{F} \ge 0.8$ the dense jet becomes significantly bent-over during its ascent phase; the jet mixing is dominated by vortex entrainment. For $\mathbf{F} \ge 2$ , the detrainment ceases to have any effect on the jet behavior. The jet trajectory in both the horizontal momentum and buoyancy planes are well predicted by the model. Despite the under-prediction of terminal rise, the jet dilution at a large number of cross-sections covering the ascent and descent of the dense jet are well-predicted. Both the terminal rise and the initial dilution for the inclined jet in perpendicular crossflow are smaller than those of a corresponding vertical jet. Both the maximum terminal rise $Z_{max}$ and horizontal lateral penetration $Y_{max}$ follow a $\mathbf{F}^{-1/2}$ dependence in the crossflow-dominated regime. The initial dilution at terminal rise follows a $S \sim \mathbf{F}^{1/3}$ dependence.  相似文献   

12.
When two open-channel flows merge in a three-branch subcritical junction, a mixing layer appears at the interface between the two inflows. If the width of the downstream channel is equal to the width of each inlet channel, this mixing layer is accelerated and is curved due to the junction geometry. The present work is dedicated to simplified geometries, considering a flat bed and a \(90^{\circ }\) angle where two configurations with different momentum ratios are tested. Due to the complex flow pattern in the junction, the so-called Serret–Frenet frame-axis based on the local direction of the velocity must be employed to characterize the flow pattern and the mixing layer as Cartesian and cylindrical frame-axes are not adapted. The analysis reveals that the centerline of the mixing layer, defined as the location of maximum Reynolds stress and velocity gradient, fairly fits the streamline separating at the upstream corner, even though a slight shift of the mixing layer towards the center of curvature is observed. The shape of the mixing layer appears to be strongly affected by the streamwise acceleration and the complex lateral confinement due to the side walls and the corners of the junction, leading to a streamwise increase of the mean velocity along the centerline and a decrease of the velocity difference. This results in a specific streamwise evolution of the mixing layer width, which reaches a plateau in the downstream region of the junction. Finally, the evaluation of the terms in the Reynolds-Averaged-Navier–Stokes equations reveals that the streamwise and normal acceleration and the pressure gradient remain dominant, which is typical of accelerated and rotational flows.  相似文献   

13.
The statistics of the fluctuating concentration field within a plume is important in the analysis of atmospheric dispersion of toxic, inflammable and odorous gases. Previous work has tended to focus on concentration fluctuations in single plumes released in the surface layer or at ground level and there is a general lack of information about the mixing of two adjacent plumes and how the statistical properties of the concentration fluctuations are modified in these circumstances. In this work, data from wind tunnel experiments are used to analyse the variance, skewness, kurtosis, intermittency, probability density function and power spectrum of the concentration field during the mixing of two identical plumes and results are compared with those obtained for an equivalent single plume. The normalised variance, skewness and kurtosis on the centre-lines of the combined plume increase with distance downwind of the stack and, in the two-source configuration, takes lower values than those found in the single plumes. The results reflect the merging process at short range, which is least protracted for cases in which the sources are in-line or up to 30 \(^{\circ }\) off-line. At angles of 45 \(^{\circ }\) and more, the plumes are effectively side-by-side during the merging process and the interaction between the vortex pairs in each plume is strong. Vertical asymmetry is observed between the upper and the lower parts of the plumes, with the upper part having greater intermittency (i.e. the probability that no plume material is present) and a more pronounced tail to the concentration probability distribution. This asymmetry tends to diminish at greater distances from the source but occurs in both buoyant and neutral plumes and is believed to be associated with the ‘bending-over’ of the emission in the cross-flow and the vortex pair that this generates. The results allowed us to identify three phases in plume development. The first, very near the stack, is dominated by turbulence generated within the plume and characterised by concentration spectra with distinct peaks corresponding to scales comparable with those of the counter-rotating vortex pair. A second phase follows at somewhat greater distances downwind, in which there are significant contributions to the concentration fluctuations from both the turbulence internal to the plume and the external turbulence. The third phase is one in which the concentration fluctuations appear to be controlled by the external turbulence present in the ambient flow.  相似文献   

14.
A mechanistic model of sedimentary oxygen demand (SOD) for hyporheic flow is presented. The permeable sediment bed, e.g. sand or fine gravel, is considered with hydraulic conductivity in the range $0.1 < K < 20$  cm/s. Hyporheic pore water flow is induced by pressure fluctuations at the sediment/water interface due to near-bed turbulent coherent motions. A 2-D advection–diffusion equation is linked to the pore water flow model to simulate the effect of advection–dispersion driven by interstitial flow on oxygen transfer through the permeable sediment. Microbial oxygen uptake in the sediment is expressed as a function of the microbial growth rate, and is related to the sediment properties, i.e. the grain diameter $(d_{s})$ and porosity $(\phi )$ . The model describes the significance of sediment particle size to oxygen transfer through the sediment and microbial oxygen uptake: With increasing grain diameter $(d_{s})$ , the hydraulic conductivity $(K)$ increases so does the oxygen transfer rate, while particle surface area per volume (the available surface area for colonization by biofilms) decreases reducing the microbial oxygen uptake rate. Simulation results show that SOD increases as the hydraulic conductivity $(K)$ increases before a threshold has been reached. After that, SOD diminishes with the increment of the hydraulic conductivity $(K)$ .  相似文献   

15.
Diversity partitioning is becoming widely used to decompose the total number of species recorded in an area or region \((\gamma )\) into the average number of species within samples \((\alpha )\) and the average difference in species composition \((\beta )\) among samples. Single-value metrics of \(\alpha \) and \(\beta \) diversity are popular because they may be applied at multiple scales and because of their ease in computation and interpretation. Studies thus far, however, have emphasized observed diversity components or comparisons to randomized, null distributions. In addition, prediction of \(\alpha \) and \(\beta \) components using environmental or spatial variables has been limited to more extensive data sets because multiple samples are required to estimate single \(\alpha \) and \(\beta \) components. Lastly, observed diversity components do not incorporate variation in detection probabilities among species or samples. In this study, we used hierarchical Bayesian models of species abundances to provide predictions of \(\alpha \) and \(\beta \) components in species richness and composition using environmental and spatial variables. We illustrate our approach using butterfly data collected from 26 grassland remnants to predict spatially nested patterns of \(\alpha \) and \(\beta \) based on the predicted counts of butterflies. Diversity partitioning using a Bayesian hierarchical model incorporated variation in detection probabilities by butterfly species and habitat patches, and provided prediction intervals for \(\alpha \) and \(\beta \) components using environmental and spatial variables.  相似文献   

16.
Given a set $X$ of $k$ points and a point $z$ in the $n$ -dimensional euclidean space, the Tukey depth of $z$ with respect to $X$ , is defined as $m/k$ , where $m$ is the minimum integer such that $z$ is not in the convex hull of some set of $k-m$ points of $X$ . If $z$ belongs to the closed region $B$ delimited by an ellipsoid, define the continuous depth of $z$ with respect to $B$ as the quotient $V(z)/\text{ Vol }(B)$ , where $V(z)$ is the minimum volume of the intersection of $B$ with the halfspaces defined by any hyperplane passing through $z$ , and $\text{ Vol }(B)$ is the volume of $B$ . We consider $z$ a random variable and prove that, if $z$ is uniformly distributed in $B$ , the continuous depth of $z$ with respect to $B$ has expected value $1/2^{n+1}$ . This result implies that if $z$ and $X$ are uniformly distributed in $B$ , the expected value of Tukey depth of $z$ with respect to $X$ converges to $1/2^{n+1}$ as the number of points $k$ goes to infinity. These findings have applications in ecology, namely within the niche theory, where it is useful to explore and characterize the distribution of points inside species niche.  相似文献   

17.
In this paper, we simulated damaging wind loads on the One Indiana Square tower in Indianapolis due to the storm of April 2nd 2006. We followed recommended practice guidelines for this urban wind modeling. First, a test case, Aerodynamics of Commonwealth Advisory Aeronautical Council (CAARC) building were modeled and simulated to compare with a publicly available experiment and other computational studies. Based on the modeling parameters in the CAARC study, then, as a clean building configuration, we modeled the One Indiana tower alone without surrounding buildings. Finally, the flow field around the tower including nearby downtown buildings were simulated. We used the Fluent flow analysis software tools. The domain was meshed using unstructured grids, the first boundary layer grid element being 10 cm (4 in.) and 15 cm (6 in.) in height from the tower and the ground for the CAARC building and the One Indiana tower, respectively. Two different wind directions of 260 \(^\circ \) and 280 \(^\circ \) at 137 km/h (85 mph) speed were considered to estimate wind loads on the One Indiana tower façades. Simulated pressure distributions on the tower and flow patterns over the downtown buildings were discussed to draw conclusions about the mechanism of extreme wind load that caused the damage. The simulations revealed that suction forces are almost twice higher hence more damaging at the corners of the west façades than straight wind. It was also seen in the simulation results that upstream building topology, specifically Chase, One America, and some low-rise towers, augmented the actual wind load unfavorably on the One Indiana Square tower. Although this study presents a specific case, the applicability of its findings are of more general interest. Similar wind events are common especially during storm seasons both in urban and suburban areas. In similar incidents, one can follow the same procedure to analyze their problems as certain modeling guidelines were followed in this study.  相似文献   

18.
We consider high-Reynolds-number Boussinesq gravity current and intrusion systems in which both the ambient and the propagating “current” are linearly stratified. The main focus is on a current of fixed volume released from a rectangular lock; the height ratio of the fluids $H$ , the stratification parameter of the ambient $S$ , and the internal stratification parameter of the current, $\sigma $ , are quite general. We perform two-dimensional Navier–Stokes simulation and compare the results with those of a previously-published one-layer shallow-water model. The results provide insights into the behavior of the system and enhance the confidence in the approximate model while also revealing its limitations. The qualitative predictions of the model are confirmed, in particular: (1) there is an initial “slumping” stage of propagation with constant speed $u_N$ , after which $u_N$ decays with time; (2) for fixed $H$ and $S$ , the increase of $\sigma $ causes a slower propagation of the current; (3) for some combinations of the parameters $H,S, \sigma $ the fluid released from the lock lacks initially (or runs out quickly of) buoyancy “driving power” in the horizontal direction, and does not propagate like a gravity current. There is also a fair quantitative agreement between the predictions of the model and the simulations concerning the spread of the current.  相似文献   

19.
We consider the dam-break initial stage of propagation of a gravity current of density $\rho _{c}$ released from a lock (reservoir) of height $h_0$ in a channel of height $H$ . The channel contains two-layer stratified fluid. One layer, called the “tailwater,” is of the same density as the current and is of thickness $h_T (< h_0)$ , and the other layer, called the “ambient,” is of different density $\rho _{a}$ . Both Boussinesq ( $\rho _{c}/\rho _{a}\approx 1$ ) and non-Boussinesq systems are investigated. By assuming a large Reynolds number, we can model the flow with the two-layer shallow-water approximation. Due to the presence of the tailwater, the “jump conditions” at the front of the current are different from the classical Benjamin formula, and in some circumstances (clarified in the paper) the interface of the current matches smoothly with the horizontal interface of the tailwater. Using the method of characteristics, analytical solutions are derived for various combinations of the governing parameters. To corroborate the results, two-dimensional direct numerical Navier–Stokes simulations are used, and comparisons for about 80 combinations of parameters in the Boussinesq and non-Boussinesq domains are performed. The agreement of speed and height of the current is very close. We conclude that the model yields self-contained and fairly accurate analytical solutions for the dam-break problem under consideration. The results provide reliable insights into the influence of the tailwater on the propagation of the gravity current, for both heavy-into-light and light-into-heavy motions. This is a significant extension of the classical gravity-current theory from the particular $h_T=0$ point to the $h_T > 0$ domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号