首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The combined electrochemical oxidation-solar-light/immobilized TiO2 film process was conducted to degrade an azo dye, Reactive Black 5 (RB5). The toxicity was also monitored by the Vibrio fischeri light inhibition test. The electrochemical oxidation rapidly decolorized RB5 (55, 110 μM) with a supporting electrolyte of 2 g l−1 NaCl at current density 277 A m−2 and pH 4. However, TOC mineralization and A310 removal were low. Additionally, the treated solution showed high biotoxicity. RB5 at 110 μM significantly retarded the de-colorization efficiency by using the solar-light/immobilized TiO2 film process. The combined electrochemical oxidation-solar-light/immobilized TiO2 process effectively increased the removal of color, A310, and TOC. The toxicity was also significantly reduced after 3 h of solar irradiation. The results indicated that the low-cost combined process is a potential technique for rapid treatment of RB5.  相似文献   

2.
This work presents an LC–MS–MS-based method for the quantitation of nonylphenol ethoxylates (NPEOs) and octylphenol ethoxylates (OPEOs) in water, sediment, and suspended particulate matter, and three of their carboxylated derivatives in water. The alkylphenol ethoxylates (APEOs) were analyzed using isotope dilution mass spectrometry with [13C6]-labeled analogues, whereas the carboxylated derivatives were determined by external standard quantitation followed by confirmation using standard additions. The method was used to study APEO’s behavior in a wastewater treatment plant (WWTP), where total dissolved NP0-16EO concentration was reduced by approximately 99% from influent (390 μg l−1) to final effluent (4 μg l−1), and total OP0-5EO concentration decreased by 94% from 3.1 to 0.2 μg l−1. In contrast, the carboxylated derivatives were formed during the process with NP0-1EC concentrations increasing from 1.4 to 24 μg l−1. Short-chain APEOs were present in higher proportions in particulate matter, presumably due to greater affinity for solids compared to the long-chain homologues. NP (0.49 μg l−1) and NP0-1EC (4.8 μg l−1) were the only APEO-related compounds detected in a surface water sample from a WWTP-impacted estuary; implying that 90% of the mass was in the form of carboxylated derivatives. Sediment analysis showed nonylphenol to be the single most abundant compound in sediments from the Baltimore Harbor area, where differences in homologue distribution suggested the presence of treated effluent in some of the sites and non-treated sources in the rest.  相似文献   

3.
Follut F  Vel Leitner NK 《Chemosphere》2007,66(11):2114-2119
Aqueous 4-nitrophenol solutions containing TiO2 or Al2O3 nanoparticles were irradiated with electron beam. 4-nitrophenol was decomposed by the ionizing radiation process in the absence of the nanoparticles. The addition of TiO2 or Al2O3 (2 g l−1) before irradiation improved the removal of 4-nitrophenol, total organic carbon (TOC) but also nitrogen (TN). To identify the origin of the loss (catalysis or simply adsorption), TiO2 or Al2O3 nanoparticles were added after irradiation. Experiments show that the effect of the presence of TiO2 or Al2O3 during irradiation is just due to adsorption.  相似文献   

4.
The influence of intact (FLT) and photomodified (phFLT) fluoranthene (0.05, 0.5 and 5 μmol l−1) and herbicide Basagran (5, 20, 35 and 50 nmol l−1) on the germination, growth of seedlings and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. The germination was significantly inhibited already by the lowest concentration (0.05 μmol l−1) of FLT and phFLT, while Basagran caused inhibition only in higher concentrations (35 and 50 nmol l−1). The growth of roots was significantly inhibited by higher concentration 5 μmol l−1 of both FLT and phFLT and the shoot of seedlings was significantly influenced only by photomodified form. The length of root and shoot was inhibited already by concentration 5 nmol l−1 of Basagran. Organic compounds applied on chloroplasts suspension influenced primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F0 values and the decrease of FV/FM and ΦII values by application of FLT (0.5 and 5 μmol l−1) and phFLT (0.05, 0.5 and 5 μmol l−1) was recorded. The maximum capacity of PSII (FV/FM) was influenced by the highest (50 nmol l−1) and the effective quantum yield of PSII (ΦII) already by the lowest (5 nmol l−1) concentration of Basagran. Hill reaction activity decreased and was significantly inhibited by higher concentration (0.5 and 5 μmol l−1) of FLT and phFLT and already by the lowest concentration (5 nmol l−1) of Basagran.  相似文献   

5.
Yu K  DeLaune RD  Boeckx P 《Chemosphere》2006,65(11):2449-2455
Wetland loss along the Louisiana Gulf coast and excessive nitrate loading into the Gulf of Mexico are interrelated environmental problems. Nitrate removal by soil denitrification activity was studied in a ponded freshwater marsh receiving diverted Mississippi River water for the purpose of reversing or slowing wetland loss. Labeled 15N-nitrate was applied at 3.8 g N m−2 into four replicate study plots after removing above ground vegetation. Nitrogen gas (N2) and nitrous oxide (N2O) emissions from the plots were determined by isotope ratio mass spectrometry (IRMS). Nitrous oxide emissions were also compared with the results determined by gas chromatograph (GC). Results showed that it took 2 weeks to remove the added nitrate with N2O emission occurring over a period of 4 d. The apparent denitrification dynamics were assumed to follow the Michaelis–Menten equation. The maximum denitrification rate and Km value were determined as 12.6 mg N m −2 h−1, and 6.5 mg N l−1, respectively. Therefore the maximum capacity for nitrate removal by the marsh soil would be equivalent to 110 g N m−2 yr−1, with more than 30% of nitrogen gas evolved as N2O. For typical nitrate concentrations in Mississippi River water of about 1 mg N l−1, nitrate would be removed at a rate of 14.7 g N m−2 yr−1 with N2O emission about 1.5%. A denitrification dynamic model showed that the efficiency of nitrate removal would largely depend on the water discharge rate into the ponded wetland. Higher discharge rate will result in less retention time for the water in the marsh where nitrate is denitrified.  相似文献   

6.
Cheng CY  Wu CY  Wang CH  Ding WH 《Chemosphere》2006,65(11):2275-2281
Concentrations of degradation products of nonylphenol polyethoxylates (NPEOs) were analyzed in river water samples in order to determine the distribution characteristic of these alkylphenolic compounds in 18 major rivers of Taiwan. The degradation products of NPEOs were detected in all river samples, with the dicarboxylates alkylphenolic degradation products (CAPEC) being detected most frequently and at the highest concentrations. Concentrations of NP and NP1EO in rivers ranged from n.d. to 5.1 μg l−1 and n.d. to 0.5 μg l−1, respectively. The total concentrations of shortened carboxylates (i.e., NP1EC + NP2EC + NP3EC) and dicarboxylates alkylphenolic degradation products (CAP1EC + CAP2EC) ranged from n.d. to 63.6 μg l−1 and n.d. to 94.6 μg l−1, respectively. Concentrations of NP2EC, NP3EC and all CAPEC residues were determined semi-quantitatively by comparing with the internal standard. Significantly higher concentrations of CAPEC residues were detected in the river waters as compared to those of NP, NP1EO and NPEC degradation products and the average proportions of these compounds in the samples of the rivers were as follows: NP + NP1EO was 5 ± 2.5%, total NPEC was 25 ± 12%, and total CAPEC was 70 ± 12%. The high concentration ratios of CAPEC/NPEC illustrate that aerobic biodegradation plays a main route in the fate of NPEO in the rivers of Taiwan.  相似文献   

7.
UV/TiO2/H2O2, UV/TiO2 and UV/H2O2 were compared as pre-treatment processes for the detoxification of mixtures of 4-chlorophenol (4CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) prior to their biological treatment. When each chlorophenol was initially supplied at 50 mg l−1, UV/TiO2/H2O2 treatment supported the highest pollutant removal, COD removal, and dechlorination efficiencies followed by UV/TiO2 and UV/H2O2. The remaining toxicity to Lipedium sativum was similar after all pre-treatments. Chlorophenol photodegradation was always well described by a first order model kinetic (r2 > 0.94) and the shortest 4CP, DCP, TCP and PCP half-lives of 8.7, 7.1, 4.5 and 3.3 h, respectively, were achieved during UV/TiO2/H2O2 treatment. No pollutant removal was observed in the controls conducted with H2O2 or TiO2 only. Inoculation of all the photochemically pre-treated mixtures with activated sludge microflora was followed by complete removal of the remaining pollutants. Combined UV/TiO2/H2O2-biological supported the highest detoxification, dechlorination (99%) and COD removal (88%) efficiencies. Similar results were achieved when each chlorophenol was supplied at 100 mg l−1. COD and Cl mass balances indicated UV, UV/H2O2, and UV/TiO2 treatments lead to the formation of recalcitrant photoproducts, some of which were chlorinated.  相似文献   

8.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

9.
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.

A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR.  相似文献   


10.
Tagami K  Uchida S 《Chemosphere》2006,65(11):2358-2365
Concentrations of halogens (Cl, Br and I) in 30 Japanese rivers were measured by ion chromatography and inductively coupled plasma mass spectrometry to understand their behavior in the terrestrial environment. Concentrations of Cl, Br and I in each river, obtained at 10 sampling points from the upper stream to the river mouth, tended to increase near the river mouth. The ranges of geometric means of Cl, Br and I in each river were 1.0–19.4 mg l−1, 2.5–67.9 μg l−1, and 0.18–8.34 μg l−1, respectively. To compare halogen behavior, the concentration ratios, Br/Cl and I/Cl, were calculated. The Br/Cl range was (2.3–7.8) × 10−3 (geometric mean: 3.74 × 10−3), and it was nearly constant except for the Yoneshiro river. It was estimated that 60–80% of total Br in the middle to lower parts of this river was the excess Br. The Br chemical form in all the rivers is generally considered to be Br. The I/Cl ratios had different trends in rivers flowing into the Japan Sea and Pacific Ocean, possibly due to the different geological features in the river catchments.  相似文献   

11.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   

12.
Spliid NH  Helweg A  Heinrichson K 《Chemosphere》2006,65(11):2223-2232
Filling and cleaning of pesticide sprayers presents a potential risk of pollution of soil and water. Three different solutions for handling sprayers have been suggested: Filling and cleaning in the field, filling and cleaning on hard surfaces with collection of the waste water, and filling and cleaning on a biobed, which is an excavation lined with clay and filled with a mixture of chopped straw, sphagnum and soil with turf on top, and with increased sorption capacity and microbial activity for degradation of the pesticides. In the present study the degradation and leaching of 21 pesticides (5 g of each) was followed in an established full-scale model biobed. Percolate was collected and analysed for pesticide residues, and the biobed material was sampled at three different depths and analysed by liquid chromatography double mass spectrometry (LC-MSMS). During the total study period of 563 days, no traces of 10 out of 21 applied pesticides were detected in the percolate (detection limits between 0.02 and 0.9 μg l−1) and three pesticides were only detected once and at concentrations below 2 μg l−1. During the first 198 days before second application, 14% of the applied herbicide bentazone was detected in the leachate with maximum and mean concentrations of 445 and 172 μg l−1, respectively. About 2% of the initial mecoprop and fluazifop dose was detected in the percolate, with mean concentrations of 23 μg l−1, while MCPA and dimethoate had mean concentrations of 3.5 and 4.7 μg l−1, respectively. Leachate concentrations for the remaining pesticides were generally below the detection limit (0.02–0.9 μg l−1, below 1% of applied). Sorption studies of five pesticides showed that compounds with a low Kd value appeared in the leachate. After 169 days, all pesticides in the biobed profile were degraded to a level below 50% of the calculated initial dose. Pesticides with Koc values above 100 were primarily found in the uppermost 10 cm and degraded slowest due to the low bioavailability. The 11 most degradable pesticides were all degraded such that less than 3% remained in the biobed after 169 days.

Following second pesticide application of the biobed, leachate was sampled 215 and 365 days after the treatment. This showed the same pesticides to be leached out and at concentrations comparable to those of the first treatment. The same pesticides as after the first treatment were retained in the biobed.  相似文献   


13.
Ahn CK  Kim YM  Woo SH  Park JM 《Chemosphere》2007,69(11):1681-1688
Selective adsorption of a hazardous hydrophobic organic compound (HOC) by activated carbon as a means of recovering surfactants after a soil washing process was investigated. As a model system, phenanthrene was selected as a representative HOC and Triton X-100 as a nonionic surfactant. Three activated carbons that differed in size (Darco 20–40 (D20), 12–20 (D12) and 4–12 (D4) mesh sizes) were used in adsorption experiments. Adsorption of surfactant onto activated carbon showed a constant maximum above the critical micelle concentration, which were 0.30, 0.23, 0.15 g g−1 for D20, D12, and D4, respectively. Selectivity for phenanthrene to Triton X-100 was much higher than 1 over a wide range of activated carbon doses (0–6 g l−1) and initial phenanthrene concentrations (10–110 mg l−1). Selectivity generally increased with decreasing particle size, increasing activated carbon dose, and decreasing initial concentration of phenanthrene. The highest selectivity was 74.9, 57.3, and 38.3 for D20, D12, and D4, respectively, at the initial conditions of 10 mg l−1 phenanthrene, 5 g l−1 Triton X-100 and 1 g l−1 activated carbon. In the case of D20 at the same conditions, 86.5% of the initial phenanthrene was removed by sorption and 93.6% of the initial Triton X-100 remained in the solution following the selective adsorption process. The results suggest that the selective adsorption by activated carbon is a good alternative for surfactant recovery in a soil washing process.  相似文献   

14.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


15.
Jin X  Jiang G  Huang G  Liu J  Zhou Q 《Chemosphere》2004,56(11):1113-1119
The estrogenic pollutants 4-tert-octylphenol (OP), 4-nonylphenol (NP) and bisphenol A (BPA) were determined in surface water samples from the Haihe River, Tianjin, China. The analytes were extracted and concentrated from 300 ml acidified water samples by liquid–liquid extractions using dichloromethane, derivatized with trifluoroacetic anhydride, and quantified by gas chromatography–mass spectrometry (GC–MS) with selected ion monitoring (SIM). Among the samples collected from 14 sampling sites, only one sample was found to have a relatively high concentration of BPA (8.30 μg l−1) and NP (0.55 μg l−1). The concentrations of OP, NP and BPA in the other samples were in the range of 18.0–20.2, 106–296 and 19.1–106 ng l−1, respectively. Recoveries for OP, NP and BPA in the spiked water samples were all over 80%.  相似文献   

16.
Toor R  Mohseni M 《Chemosphere》2007,66(11):2087-2095
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.  相似文献   

17.
Burns PE  Hyun S  Lee LS  Murarka I 《Chemosphere》2006,63(11):1879-1891
Leachate derived from unlined coal ash disposal facilities is a potential anthropogenic source of arsenic to the environment. To establish a theoretical framework for predicting attenuation of arsenic by soils subject to ash landfill leachate, which is typically enriched in calcium and sulfate, the adsorption of As(V) and As(III) was characterized from 1 mM CaSO4 for 18 soils obtained down-gradient from three ash landfill sites and representing a wide range in soil properties. As(V) consistently exhibited an order of magnitude greater adsorption than As(III). As(V) adsorption was best described by coupling pH with 15 s DCB-Fe (R2 = 0.851,  = 0.001), although pH coupled to clay, DCB-Fe, or DCB-Al also generated strong correlations. For As(III), pH coupled to Ox–Fe (R2 = 0.725,  = 0.001) or Ox–Fe/Al (R2 = 0.771,  = 0.001) provided the best predictive relationships. Ca2+ induced increases in As(V) adsorption whereas sulfate suppressed both As(V) and As(III) adsorption. Attenuation of arsenic from ash leachate agreed well with adsorption measured from 1 mM CaSO4 suggesting that the use of 1 mM CaSO4 in laboratory adsorption tests is a reasonable approach for estimating arsenic behavior in soils surrounding ash landfills. We also showed that the impact of leachate-induced changes in soil pH over time may not be significant for As(V) adsorption at pH < 7; however, As(III) adsorption may be impacted over a wider pH range especially if phyllosilicate clays contribute significantly to adsorption. The benefits and limitations of predicting arsenic mobility using linearized adsorption coefficients estimated from nonlinear adsorption isotherms or from the relationships generated in this study are also discussed.  相似文献   

18.
Synchronous-scan fluorescence spectra of Chlorella vulgaris solution   总被引:1,自引:0,他引:1  
Liu X  Tao S  Deng N 《Chemosphere》2005,60(11):1550-1554
The characterization of the Chlorella vulgaris solution was carried out using synchronous-scan spectroscopy. The range of concentration of algae and Fe(III) in aqueous solutions were 5 × 108–8 × 109 cells l−1 and 10–60 μM, respectively. Effective characterization method used was synchronous-scan fluorescence spectroscopy. The wavelength difference (Δλ) of 90 nm was maintained between excitation and emission wavelengths; 90 nm was found to be the best Δλ for effective characterization of Chlorella vulgaris solution with or without quencher species (e.g., Fe(III), humic acid (HA)) for the first time. The peak was observed at about EX 236.6 nm/EM 326.6 nm for synchronous-scan fluorescence spectra. The fluorescence quenching of algae in system of algae–Fe(III)–HA was studied using synchronous-scan spectroscopy for the first time. Fe(III) was clearly the effective quencher. The relationship between I0/I (quenching efficiency) and c (concentration of Fe(III) added) was a linear correlation for the algae solution with Fe(III). Also, Aldrich humic acid was found to be an effective quencher. pH effect on synchronous-scan fluorescence intensity of algal solution with Fe(III) and/or HA was evident.  相似文献   

19.
The electrochemical performance of pure Ti–Pt/β-PbO2 electrodes, or doped with Fe and F (together or separately), in the oxidation of simulated wastewaters containing the Blue Reactive 19 dye (BR-19), using a filter-press reactor, was investigated and then compared with that of a boron-doped diamond electrode supported on a niobium substrate (Nb/BDD). The electrooxidation of the dye simulated wastewater (volume of 0.1 l, with a BR-19 initial concentration of 25 mg l−1) was carried out under the following conditions: current density of 50 mA cm−2, volume flow rate of 2.4 l h−1, temperature of 25 °C and electrode area of 5 cm2. The performances of the electrodes in the dye decolorization were quite similar, achieving 100% decolorization, and in some cases 90% decolorization was achieved by applying only ca. 0.3 A h l−1 (8 min of electrolysis). The reduction of the simulated wastewater organic load, monitored by its total organic carbon content (TOC), was greater for the Ti–Pt/β-PbO2–Fe,F electrode obtained from an electrodeposition bath containing 1 mM Fe3+ and 30 mM F. In this case, after 2 h of electrolysis the obtained TOC reduction was 95%, while for the pure β-PbO2 and the Nb/BDD electrodes the reductions were 84% and 82%, respectively.  相似文献   

20.
Hsia T. H.  S. L. Lo  C. F. Lin 《Chemosphere》1992,25(12):1825-1837
The adsorption of As(V) by amorphous iron oxide was investigated at 25°C, 0.01 M NaNO3 background electrolyte as a function of solution pH(4–10) at three initial As(V) concentrations and two Fe(III) concentrations. As(V) adsorption increased with decreasing pH. A modified Langmuir isotherm has been used for describing an equilibrium partition existing between solid and liquid phases. The triple-layer model was used for simulating As(V) adsorption on iron oxide surface. This model was able to describe As(V) adsorption over the pH range 4–10, all at the concentrations of As(V) and Fe(III) studied. =Fe(H2AsO4)0, = Fe(HAsO4) and = Fe(AsO4)2− have been shown through simulation with inner-sphere complexation products to be more consistent with experimental adsorption observations than complexation with other surface species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号