首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pine wilt disease (PWD) is caused by a non-native pest that has spread extensively throughout Japan. Previous research has indicated that most infected trees have died and the litter deposited has resulted in changes to stream-water chemistry, particularly increased nitrate (NO 3 ? ) concentrations. In this study, we divided stream nitrogen (N) export into N loss due to PWD and baseline N leakage without disturbance based on long-term monitoring. The annual N export was 110.0 mol N ha?1 year?1 in 1990 and 749.8 mol N ha?1 year?1 in 1997, and had decreased to 37.0 mol N ha?1 year?1 in 2005. N export under PWD influence was estimated to be 3697 mol N ha?1, and N loss due to PWD was 2810 mol N ha?1. N loss due to PWD was three times larger than baseline N leakage for the disturbed period. These changes in plant–herbivore relationships could affect N status in a forest ecosystem. So-called “semi-natural” disturbances related to non-native species invasion and increases of atmospheric N deposition caused by human activity will increase. Long-term monitoring studies of various aspects are necessary to offer insight into this ecosystem.  相似文献   

2.
Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 μg/m2/year) than Cadillac (9.4 μg/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 μg/m2/year) than from Hadlock Brook watershed (1.3 μg/m2/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ∼50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.  相似文献   

3.
Southern Ontario receives the highest levels of atmospheric nitrogen (N) deposition in Canada and there are concerns that forests in the region may be approaching a state of ‘N saturation’. In order to evaluate whether potential chemical indices provide evidence of N saturation, 23 hardwood plots were sampled along a modeled N-deposition gradient ranging from 9.3 to 12.8 kg/ha/year. All plots were dominated by sugar maple (Acer saccharum Marsh.) and foliar N and foliar δ15N were positively correlated with modeled N deposition. However, forest floor N content and the C:N ratio were unrelated to N deposition, but were instead related to soil pH and annual temperature; lower C:N ratios and higher N content in the forest floor were found at the most acidic sites in the cooler, northern part of the study region despite lower N deposition. Likewise, δ15N values in surface mineral soil and the 15N enrichment factor of foliage (δ15N foliage ? δ15N soil) are correlated to soil pH and temperature and not N deposition. Further, potential N mineralization, ammonification, and nitrification in Ontario maple stands were highest in the northern part of the region with the lowest modeled N deposition. Nitrogen cycling in soil appears to be primarily influenced by the N status of the forest floor and other soil properties rather than N deposition, indicating that chemical indices in soil in these hardwood plots may not provide an early indicator of N saturation.  相似文献   

4.
Field surveys were carried out from January 2007 to December 2008 to investigate seasonal variations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) transported to the Linjiang Bay of the Three Gorges Reservoir, China. The results revealed that both DIN and DIP exhibited large seasonal variability. DIN (dominated by NH4?CN) concentrations were drastically higher in the dry season than those in the rainy season, and the same seasonal patterns of DIP concentrations and DIN and DIP fluxes were observed but inverse to that of DIN concentrations. The interannual variation in DIN fluxes descended by 28.2% from 2007 to 2008, while DIP fluxes increased by 40.9%, which were closely constant with interannual changes in DIN and DIP concentrations, respectively. The study indicated that nutrient fluxes (DIN and DIP) were strongly correlated with both nutrient concentrations and river discharge, and the Linjiang Bay received approximately 3,416 × 103 kg DIN and 324 × 103 kg DIP every year. In addition, DIN mainly originated from point sources, but DIP originated from non-point sources. It is shown that to control point source pollution is the most effective step for water quality improvement and reducing nutrient loading inputs in the Linjiang Bay.  相似文献   

5.
Nitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen). Sampling sites were chosen in Quercus coccifera (kermes oak) shrublands and Pinus halepensis (Aleppo pine) forests to cover a range of inorganic N deposition representative of the levels found in the Iberian Peninsula (between 4.4 and 8.1 kg N ha?1 year?1). We extended the ambient N deposition gradient by including experimental plots to which N had been added for 3 years at rates of 10, 20, and 50 kg N ha?1 year?1. Overall, N deposition (extant plus simulated) increased soil inorganic N availability and caused soil acidification. Nitrogen deposition increased phosphomonoesterase (PME) enzyme activity and PME/nitrate reductase (NR) ratio in both species, whereas the NR activity was reduced only in the moss. Responses of PME and NR activities were attributed to an induced N to phosphorus imbalance and to N saturation, respectively. When only considering the ambient N deposition, soil organic C and N contents were positively related to N deposition, a response driven by pine forests. The PME/NR ratios of the moss were better predictors of N deposition rates than PME or NR activities alone in shrublands, whereas no correlation between N deposition and the lichen physiology was observed. We conclude that integrative physiological measurements, such as PME/NR ratios, measured on sensitive species such as P. squarrosa, can provide useful data for national-scale biomonitoring programs, whereas soil acidification and soil C and N storage could be useful as additional corroborating ecosystem indicators of chronic N pollution.  相似文献   

6.
We presented measurements of wet deposition of NH 4 + –N and NO 3 ? –N from 1986 to 2006 in Shenzhen City, China. Over the past 20 years, NO 3 ? –N concentration had significantly increased, but a reverse trend was found for NH 4 + –N. The main form of total inorganic nitrogen (TIN) was NH 4 + –N and the average NH 4 + –N/NO 3 ? –N ratio was 1.57 in this area. The contribution of NO 3 ? –N to TIN increased from 28–42% in the period of 1986–2000 to 50–63% during 2001–2006. The increased deposition flux of NO 3 ? –N resulted in the increasing trend of TIN, although NH 4 + –N showed a decreasing trend over time. Average deposition flux of TIN during 1986–2006 was 13.24 kg/ha/year, with a minimum value of 6.03kg/ha/year in 1988 and a maximum value of 20.52 kg/ha/year in 1997. Wet deposition fluxes of N appeared to vary with season, 81% occurred in the warm season (from April to September). The wet deposition of TIN to the Shenzhen Reservoir reached 8,902 kg in 2006, which contributed 9.95% of the total nonpoint pollution to the reservoir and will be increased in the future.  相似文献   

7.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

8.
This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0–1, 1–3, 3–5, 5–10, 10–20, 20–30, 30–40, and 40–50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (Corg), and total nitrogen (Nt) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha???1 under black locust compared to 13,700 kg ha???1 under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.  相似文献   

9.
Laguna Larga, a coastal lagoon in central Cuba, has been heavily altered by tourism infrastructure construction and sewage disposal. We hypothesize that this has decreased the circulation and caused eutrophication of the lagoon. To assess this, 12 bimonthly samplings were carried out in 2007–2008. Temperature, salinity, oxygen, nutrients and nitrogen, and phosphorous fractions (inorganic, organic, and total) were determined. Water and salt budgets, as well as biogeochemical fluxes of nitrogen and phosphorus were calculated using the LOICZ budget model for the three sections of the lagoon identified by morphological constrains and salinity patterns. Laguna Larga is a choked lagoon with restricted water circulation, low exchange, and high residence times that vary significantly along its sections. Residence time was estimated to be 0.1–0.7 years for the inner section and 1–9 days for the outer one. High levels of total nitrogen (annual means 126–137 μM, peaks up to 475 μM) and phosphorus (2.5–4.4 μM, peaks up to 14.5 μM) are evidence of eutrophication of Laguna Larga. During 2007, an average precipitation year, Laguna Larga exported water (703 m3 d?1) and was a source of nitrogen (9.026 mmol m?2 d?1) and phosphorus (0.112 mmol m?2 d?1) to the adjacent sea. δ15N determinations in the seagrass Thalassia testudinum (?1.83 to +3.02?‰) differed significantly between sites in the lagoon and offshore reference sites located W of the inlet, but were similar to those located E of the inlet. δ15N determinations in the seaweed Penicillus dumetosus (+1.02 to +4.2) did not show significant differences.  相似文献   

10.
New forest management and planning approaches are designed to optimize forest structure. Optimal forest structure was determined using newly established growth models while considering primary timber production objectives as well as non-timber objectives for inaccessible areas and social and political pressures on land management. With currently planned management the forests of the Ormanüstü Planning Unit (OPU) in the Black Sea region of northern Turkey are likely to become an important C sink. To quantify this potential C sink and understand its implication to the regional carbon budget and future forest management, we estimated the changes in the OPU between 1973 and 2006. Based on four periods of data for the OPU forests obtained from the Forest Management and Planning Office of Turkey, we used allometric biomass and C regression equations along with biomass expansion factors to estimate the forest biomass carbon pool for each of four inventory years 1973, 1984, 1997, and 2006. Since 1973, OPU forests have accumulated 110.2?×?103 tons of C as a result of forest expansion and the growth of extant forests, increasing by 50.8 % from 217?×?103 tons in 1973 to 327.2?×?103 tons C in 2006. Hardwood and softwood forests accounted for 44 and 56 % of carbon accumulation during this period, respectively. From 1973 through 2006, forest C accumulated at a rate of 3.3?×?103 tons C year?1. Carbon density of the OPU forests in the Black Sea region increased by 48.2 % from 5,679 to 8,419 tons/ha.  相似文献   

11.
Ion-exchange resins (IER) offer alternative approaches to measuring ionic movement in soils that may have advantages over traditional approaches in some settings, but more information is needed to understand how IER compare with traditional methods of measurement in forested ecosystems. At the Bear Brook Watershed in Maine (BBWM), one of two paired, forested watersheds is treated bi-monthly with S and N (28.8 and 25.2kgha−1yr−1 of S and N, respectively). Both IER and ceramic cup tension lysimeters were used to study soil solution responses after ∼11 years of treatment. Results from both methods showed treatments resulted in the mobilization of base cations and Al, and higher SO4—S and inorganic N in the treated watershed. Both methods indicated similar differences in results associated with forest type (hardwoods versus softwoods), a result of differences in litter quality and atmospheric aerosol interception capacity. The correlation between lysimeter and IER data for individual analytes varied greatly. Significant correlations were evident for Na (r=0.75), Al (r=0.65), Mn (r=0.61), Fe (r=0.57), Ca (r=0.49), K (r=0.41) and NO3—N (r=0.59). No correlation was evident between IER and soil solution data for NH4—N and Pb. Both IER and soil solution techniques suggested similar interpretations of biogeochemical behavior in the watershed.  相似文献   

12.
Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored marshes dominated by Spartina maritima to provide support for restoration and management strategies that may offset negative aspects of eutrophication and climate change in estuarine ecosystems. Sediment C content was between ca. 13 mg C g?1and sediment N content was ca. 1.8 mg N g?1. The highest C content for S. maritima was recorded in leaves and stems (ca. 420 mg C g?1) and the lowest in roots (361?±?4 mg C g?1). S. maritima also concentrated more N in its leaves (31?±?1 mg N g?1) than in other organs. C stock in the restored marshes was 29.6 t C ha?1; ca. 16 % was stored in S. maritima tissues. N stock was 3.6 t N ha?1, with 8.3 % stored in S. maritima. Our results showed that the S. maritima restored marshes, 2.5 years after planting, were sequestering atmospheric C and, therefore, provide some mitigation for global warming. Stands are also capturing nitrogen and reducing eutrophication. The concentrations of C and N contents in sediments, and cordgrass relative cover of 62 %, and low below-ground biomass (BGB) suggest restored marshes can sequester more C and N. S. maritima plantations in low marshes replace bare sediments and invasive populations of exotic Spartina densiflora and increase the C and N sequestration capacity of the marsh by increasing biomass production and accumulation.  相似文献   

13.
In an effort to determine vehicular impact on soil quality, soil samples were collected from three different zones (Pahalgam, Batakote, and Chandanwari) in Pahalgam forest ecosystem. Results showed that a significant decrease in moisture content, organic carbon, available nitrogen, and potassium was observed in nearby road side soils. However, pH was observed to be on neutral side and available phosphorus recorded high concentration. The concentration of heavy metals Pb2+, Cu2+, Zn2+, Ni2+, and Cd2+ estimated was also significantly high. Furthermore, concentration of Pb2+ at high vehicular load subzones was observed to be highest (1.168 mg/Kg) followed by Zn2+ (0.896 mg/Kg), Ni2+ (0.649 mg/Kg), Cu2+ (0.415 mg/Kg), and Cd2+ (0.079 mg/Kg). An inter-zone analysis revealed that the concentration of the heavy metals (Pb2+?>?Ni2+?>?Cd2+) was observed to follow the trend, Z-I?>?Z-II?>?Z-III. Variation along the temporal gradient and the impact on soil qualities were notably higher in summer. Vehicular pollution to a great extent impacts physico-chemical characteristics and more interestingly adds substantial concentration of heavy metals in soils.  相似文献   

14.
Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00?±?1.28 ng Hg(II)?g?1 and 0.15?±?0.08 ng MeHg g?1 wet weight (phytoplankton) and 2.5?±?2.03 ng Hg(II)?g?1 and 0.25?±?0.09 ng MeHg g?1 wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.  相似文献   

15.
Balances of nitrogen and phosphate were studied in the Allal El Fassi reservoir (Morocco); the results showing that nitrogen input (296 mg m?2 d?1) was 161 % higher than output (183 mg m?2 d?1). Phosphate input (35.65 mg m?2 d?1) was 865 % higher than output (4.12 mg m?2 d?1), causing a progressive increase in the internal phosphate stock. Sedimentation flux was equally high (53.80 and 18 mg m?2 d?1) for both nitrogen and phosphate input, mainly from the Sebou River and in particulate form which immediately settles upon arrival in the reservoir. The release of nitrogen and phosphate from the sediment (5.40 and 1.15 mg m?2 d?1, respectively) depended on physicochemical and biological (bacteria and viruses) variability and the calcareous nature of the catchment basin. Calcium-bound phosphate prevailed in the reservoir. Drastic control of phosphate input is suggested to avoid accumulation of calcium-bound phosphate which may dissociate and thereby contribute to eutrophication.  相似文献   

16.
China maintains the largest artificial forest area in the world. Studying the dynamic variation of forest biomass and carbon stock is important to the sustainable use of forest resources and understanding of the artificial forest carbon budget in China. In this study, we investigated the potential of Landsat time series stacks for aboveground biomass (AGB) estimation in Yulin District, a key region of the Three-North Shelter region of China. Firstly, the afforestation age was successfully retrieved from the Landsat time series stacks in the last 40 years (from 1974 to 2013) and shown to be consistent with the surveyed tree ages, with a root-mean-square error (RMSE) value of 4.32 years and a determination coefficient (R 2) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R 2 values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in seven counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360 %. For the persistent forest area since 1974, the forest AGB density increased from 15.72 t/ha in 1986 to 44.53 t/ha in 2013, with an annual rate of about 0.98 t/ha. For the artificial forest planted after 1974, the AGB density increased about 1.03 t/ha a year from 1974 to 2013. The results present a noticeable carbon increment for the planted artificial forest in Yulin District over the last four decades.  相似文献   

17.
The concentrations of total polycyclic aromatic hydrocarbons (?PAHs) and 22 individual PAH compounds in 42 surface sediments collected from the mangrove forest of Qeshm Island and Khamir Port (Persian Gulf) were analyzed. ?PAHs concentrations ranged from 259 to 5,376 ng?g?1 dry weight with mean and median values of 1,585 and 1,146 ng?g?1, respectively. The mangrove sediments had higher percentages of lower molecular weight PAHs and the PAH profiles were dominated by naphthalene. Ratio values of specific PAH compounds were calculated to evaluate the possible source of PAH contamination. This ratios suggesting that the mangrove sediments have a petrogenic input of PAHs. Sediment quality guidelines were conducted to assess the toxicity of PAH compounds. The levels of total PAHs at all of stations except one station, namely Q6, were below the effects range low. Also, concentrations of naphthalene in some stations exceeded the effects range median.  相似文献   

18.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

19.
Interpretations of state and trends in lake water quality are generally based on measurements from one or more stations that are considered representative of the response of the lake ecosystem. The objective of this study is to examine how these interpretations may be influenced by station location in a large lake. We addressed this by analyzing trends in water quality variables collected monthly from eight monitoring stations along a transect from the central lake to the north in Lake Taihu (area about 2,338 km2), China, from October 1991 to December 2011. The parameters examined included chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) concentrations, and Secchi disk depth (SD). The individual variables were increasingly poorly correlated among stations along the transect from the central lake to the north, particularly for Chl a and TP. The timing of peaks in individual variables was also dependent on station location, with spectral analysis revealing a peak at annual frequency for the central lake station but absence of, or much reduced signal, at this frequency for the near-shore northern station. Percentage annual change values for each of the four variables also varied with station and indicated general improvement in water quality at northern stations, particularly for TN, but little change or decline at central lake stations. Sediment resuspension and tributary nutrient loads were considered to be responsible for some of the variability among stations. Our results indicate that temporal trends in water quality may be station specific in large lakes and that calculated whole-lake trophic status trends or responses to management actions may be specific to the station(s) selected for monitoring and analysis. These results have important implications for efficient design of monitoring programs that are intended to integrate the natural spatial variability of large lakes.  相似文献   

20.
The leaching behavior of nitrogen was studied in single rice paddy production ecosystems in Tsukuba, Japan after 75 years of consistent fertilization regimes (no fertilizer, ammonium sulfate, a combination of composted rice straw with soybean cake, and fresh clover). During the 75-year period, management was unchanged with respect to rice planting density, irrigation, and net N fertilization for each field to which an N-source was added. Percolation water was collected, from May 2001 to April 2002, using porous suction cups installed in the fields at depths of 15, 40, and 60 cm. All water samples were taken to the laboratory for the measurement of both NH4 ?+??CN and NO3 ????CN concentrations using a continuous-flow nitrogen analyzer. The result indicated that there were significant differences in N leaching losses between treatments during the rice growing season. Total N leaching was significantly lower with the application of composted rice straw plus soybean cake (0.58 kg N ha???1) than with ammonium sulfate (2.41 kg N ha???1), which resulted in N leaching at a similar level to that with the fresh clover treatment (no significant difference). The majority of this N leaching was not due to NO3 ????CN loss, but to that of NH4 ?+??CN. The mean N leaching for all fertilizer treatments during the entire rice growing season was 1.58 kg N ha???1. Composted rice straw plus soybean cake produced leaching losses which were 65?C75% lower than those with the application of fresh clover and ammonium sulfate. N accumulation resulting from nitrification in the fallow season could be a key source of nitrate?CN leaching when fields become re-flooded before rice transplanting in the following year; particular attention should be paid to this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号