首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Channel changes from 1919 to 1989 were documented in two study reaches of the Merced River in Yosemite National Park through a review of historical photographs and documents and a comparison of survey data. Bank erosion was prevalent and channel width increased an average of 27% in the upstream reach, where human use was concentrated. Here, trampling of the banks and riparian vegetation was common, and banks eroded on straight stretches as frequently as on meander bends. Six bridges in the upper reach constrict the channel by an average of 38% of the original width, causing severe erosion. In the downstream control reach, where human use was minimal, channel widths both decreased and increased, with a mean increase of only 4% since 1919. Bank erosion in the control reach occurred primarily on meander bends. The control reach also had denser stands of riparian vegetation and a higher frequency of large woody debris in channels. There is only one bridge in the lower reach, located at the downstream end. Since 1919, bank erosion in the impacted upstream reach contributed a significant amount of sediment (74,800 tonnes, equivalent to 2.0 t/km2/yr) to the river. An analysis of 75 years of precipitation and hydrologic records showed no trends responsible for bank erosion in the upper reach. Sediment input to the upper reach has not changed significantly during the study period. Floodplain soils are sandy, with low cohesion and are easily detached by lateral erosion. The degree of channel widening was positively correlated with the percentage of bare ground on the streambanks and low bank stability ratings. Low bank stability ratings were, in turn, strongly associated with high human use areas. Channel widening and bank erosion in the upper reach were due primarily to destruction of riparian vegetation by human trampling and the effect of bridge constrictions on high flow, and secondarily to poorly installed channel revetments. Several specific recommendations for river restoration were provided to park management.  相似文献   

2.
Removal of nonnative riparian trees is accelerating to conserve water and improve habitat for native species. Widespread control of dominant species, however, can lead to unintended erosion. Helicopter herbicide application in 2003 along a 12-km reach of the Rio Puerco, New Mexico, eliminated the target invasive species saltcedar (Tamarix spp.), which dominated the floodplain, as well as the native species sandbar willow (Salix exigua Nuttall), which occurred as a fringe along the channel. Herbicide application initiated a natural experiment testing the importance of riparian vegetation for bank stability along this data-rich river. A flood three years later eroded about 680,000 m3 of sediment, increasing mean channel width of the sprayed reach by 84%. Erosion upstream and downstream from the sprayed reach during this flood was inconsequential. Sand eroded from channel banks was transported an average of 5 km downstream and deposited on the floodplain and channel bed. Although vegetation was killed across the floodplain in the sprayed reach, erosion was almost entirely confined to the channel banks. The absence of dense, flexible woody stems on the banks reduced drag on the flow, leading to high shear stress at the toe of the banks, fluvial erosion, bank undercutting, and mass failure. The potential for increased erosion must be included in consideration of phreatophyte control projects.  相似文献   

3.
Understanding how hydraulic factors control alluvial river meander migration can help resource managers evaluate the long-term effects of floodplain management and bank stabilization measures. Using a numerical model based on the mechanics of flow and sediment transport in curved river channels, we predict 50 years of channel migration and suggest the planning and ecological implications of that migration for a 6.4-km reach (river miles 218–222) of the Sacramento River near the Woodson Bridge State Recreation Area, California, USA. Using four different channel management scenarios, our channel migration simulations suggest that: (1) channel stabilization alters the future channel planform locally and downstream from the stabilization; (2) rock revetment currently on the bank upstream from the Woodson Bridge recreation area causes more erosion of the channel bank at the recreation area than if the revetment were not present; (3) relocating the channel to the west and allowing subsequent unconstrained river migration relieves the erosion pressure in the Woodson Bridge area; (4) the subsequent migration reworks (erodes along one river bank and replaces new floodplain along the other) 26.5 ha of land; and (5) the river will rework between 8.5 and 48.5 ha of land in the study reach (over the course of 50 years), depending on the bank stabilization plan used. The reworking of floodplain lands is an important riparian ecosystem function that maintains habitat heterogeneity, an essential factor for the long-term survival of several threatened and endangered animal species in the Sacramento River area.  相似文献   

4.
Abstract: Streambank erosion by mass‐failure processes represents an important form of channel adjustment and a significant source of sediment in disturbed streams. Mass failures regularly occur by a combination of hydraulic processes that undercut bank toes and geotechnical processes that cause bank collapse by gravity. Little if any quantitative information is available on the effectiveness of bank treatments on reducing erosion. To evaluate potential reduction in sediment loadings emanating from streambanks, the hydraulic and geotechnical processes responsible for mass failure were simulated under existing and mitigated conditions using a Bank‐Stability and Toe‐Erosion Model (BSTEM). Two critical erosion sites were selected from each of the three watersheds known to contribute the greatest amounts of fine sediment by streambank processes in the Lake Tahoe Basin. A typical high‐flow annual hydrograph was selected for analysis. Bank‐material strength data were collected for each layer as were species‐specific root‐reinforcement values. The effects of the first flow event on bank‐toe erosion were simulated using an excess shear‐stress approach. The resulting geometry was then exported into the bank‐stability submodel to test for the relative stability of the bank under peak flow and drawdown conditions. In this way, BSTEM was used iteratively for all flow events for both existing and mitigated conditions. On average, 13.6% of the material was eroded by hydraulic shear, the remainder by mass failures, which occurred about five times over the simulation period. Simulations with 1.0 m‐high rock‐toe protection showed a dramatic reduction in streambank erosion (69‐100%). Failure frequency for the simulation period was reduced in most cases to a single episode. Thus, an almost 90% reduction in streambank loadings was achieved by virtually eliminating the erosion of only 14% of the material that was entrained by hydraulic forces. Consequently, simulations show average load reductions of about an order of magnitude. Results stress the critical importance of protecting the bank toe‐region from steepening by hydraulic forces that would otherwise entrain previously failed and in situ bank materials, thereby allowing the upper bank to flatten (by failure) to a stable slope.  相似文献   

5.
During the period of water impoundment and sediment detention of the Sanmenxia Reservoir, riverbank erosion processes played a key role in the channel evolution of the Lower Yellow River (LYR). However, research into bank erosion rates of the LYR has been neglected due to the lack of direct field monitoring. In this study, an indirect method is proposed to determine bank erosion rates at daily time scales by outlining a detailed calculation procedure using measured hydrological data. A total of 810 data points of daily bank erosion rates before and after the construction of Sanmenxia Dam was calculated at seven hydrometric sections along the LYR, with the corresponding values of the bank stability coefficient and the width‐to‐depth ratio also being calculated. Empirical relations were then developed to estimate the daily bank erosion rates, using these parameters at the sections. Temporal and spatial variability in daily bank erosion rates in the LYR before and after dam construction were also investigated, revealing that: (1) the bank erosion rates had a mean value of 16.7‐29.1 m/day in the braided reach, with a maximum value of 290.0 m/day, while they were relatively low in the meandering reach, with a mean value of 2.5 m/day; (2) the erosion rates before dam construction were slightly greater than those after dam construction, with the difference reaching 5‐10 m/day in the braided reach, decreasing in the transitional reach gradually, and being slight in the meandering reach.  相似文献   

6.
Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine grained sediment emanating from upland and channel erosion. A recent study showed that the Upper Truckee River is the single largest contributor of sediment to Lake Tahoe, with a large proportion of the sediment load emanating from streambanks. This study combines field data with numerical modeling to identify the critical conditions for bank stability along an unstable reach of the Upper Truckee River, California. Bank failures occur during winter and spring months, brought on by repeated basal melting of snow packs and rain‐on‐snow events. Field studies of young lodgepole pines and Lemmon's willow were used to quantify the mechanical, hydrologic, and net effects of riparian vegetation on streambank stability. Lemmon's willow provided an order of magnitude more root reinforcement (5.5 kPa) than the lodgepole pines (0.5 kPa); the hydrologic effects of the species varied spatially and temporally and generally were of a smaller magnitude than the mechanical effects. Overall, Lemmon's willow provided a significant increase in bank strength, reducing the frequency of bank failures and delivery of fine grained sediment to the study reach of the Upper Truckee River.  相似文献   

7.
The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.  相似文献   

8.
ABSTRACT: The tailwater of Bridgewater Dam, below Lake James, North Carolina, is a designated trout stream. It has environmental attributes for a good cold water fishery with the exception of high suspended sediments. Muddy Creek, a tributary about 1.5 km downstream of the dam, is a major source of sediments. The Muddy Creek Watershed Restoration Initiative was established to develop and implement a sediment control plan. The Watershed Analysis Risk Management Framework was applied to simulate soil erosion and sedimentation and to help determine appropriate action. The simulated sediment concentrations of the river were comparable to observed data from November 1994 to November 2001. For the base condition, the sediment load was 135,000 kg/d from surface erosion and 1,300,000 kg/d from bank erosion. Increasing the buffer strip from existing 50 to 80 percent to 100 percent of stream segments would only reduce surface erosion to 70,400 kg/d with little change in sediment concentrations. Eliminating riverbank erosion would reduce the sediment load from 920,000 to 87,700 kg/d. The bank stabilization project would not only lower suspended sediment concentrations for Muddy Creek, but also reduce the lake sediment accumulation in the downstream Lake Rhodhiss by approximately 13 percent.  相似文献   

9.
A conceptual model of the morphological development of the riparian margins of newly cut river channels is presented, suggesting early feedbacks between vegetation growth and bank form. To test the model, observations of long and cross profiles, bank sediment and seed deposition, and bank vegetation development were collected over the first 2 years of river flows through a reach of the River Cole, West Midlands, UK. The newly created channel had a sinuous planform and varying asymmetric trapezoidal cross section in sympathy with the planform. No imposed bedforms or bank reseeding were included in the design. Over the 2 years, development of bedforms was rapid, with bed sediment sorting and bank profile adjustment occurring more steadily and progressively. Six classes of bank profile were identified by the end of the study period, illustrating close associations with sediment aggradation, vegetation colonization, and growth patterns. Vegetation colonization of the banks was seeded predominantly from local sources during the summer and from hydrochory (transport by the river) during the winter. Colonizing vegetation on the riverbanks appeared to act as a significant propagule source by the second summer and as an increasingly important roughness element, trapping both propagules and sediment, within the second year and providing early feedback into bank evolution. As a result, the time required for riparian margin development in the conceptual model was found to be considerably longer than observed in the study river. In addition, the role of surface wash/bank failure in modifying the bank profile and transporting seeds onto the upper bank face during the first year of bank development was found to be important in initiating rapid bank vegetation colonization and surface stabilization. This set of processes had not been incorporated in the initial conceptual model. In relation to channel restoration, this research illustrates that in small temperate rivers of modest energy the provision of an initial, sinuous corridor is sufficient to induce rapid development of fluvial features and vegetation cover without the need to construct bed forms or to seed the banks.  相似文献   

10.
Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.  相似文献   

11.
The drawdown of reservoirs behind dams is an important management strategy (e.g., for removal of aging infrastructure, flushing of sediment), and an opportunity to study erosional processes. A numerical model was developed to examine retrogressive bank erosion across reservoir drawdown scenarios and to evaluate factors controlling the rate, volume, and mechanisms of lateral erosion. Modeled processes included dynamic drawdown of groundwater, sequential slope failures via limit equilibrium analysis, and retrogression considering stress interaction between failing blocks. Field measurements were coupled with Staged, Slow, and Rapid drawdown scenarios. Results highlight the importance of including retrogression as an avenue for lateral erosion, as sequential block failures were found to occur in all scenarios except Slow drawdown. This result indicates that bank stability models without some means of characterizing the evolution of slope failure during drawdown are likely underestimating bank failure rates and volumes. In contrast, dynamic groundwater was not found to be a dominant control for any drawdown scenario. Model results also demonstrate that the drawdown increment is a first-order control on slope instability via the development of drained or undrained conditions. A majority of failures occurred under undrained conditions. To maximize slope stability, using slow drawdown to activate internal friction under drained conditions is essential. The design of the drawdown rate created a tradeoff between the amount of impact created and when the impact is produced. The study also articulated the need for coupling models and field observations for rapidly changing systems.  相似文献   

12.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

13.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

14.
River engineers use sediment transport formulas to design regulated channels in which the river's ability to transport bedload would remain in equilibrium with the delivery of materials from upstream. In gravel-bed rivers, a number of factors distort the simple relationship between particle size and hydraulic parameters at the threshold of sediment motion, inherent in the formulas. This may lead to significant errors in predicting the bedload transport rates in such streams and hence to instability of their regulated channels. The failure to recognize a nonstationary river regime may also result in unsuccessful channelization. Rapid channel incision has followed channelization of the main rivers of the Polish Carpathians in the 20th century. A case study of the Raba River shows that incision has resulted from the increase in stream power caused by channelization and the simultaneous reduction in sediment supply due to variations in basin management and a change in flood hydrographs. Calculations of bedload transport in the river by the Meyer-Peter and Müller formula are shown to have resulted in unrealistic estimates, perhaps because the different degree of bed armoring in particular cross-sections was neglected. It would have been possible to avoid improper channelization if the decreasing trend in sediment load of the Carpathian rivers had been recognized on the basis of geomorphological and sedimentological studies. Allowing the rivers to increase their sinuosity, wherever possible without an erosional threat to property and infrastructure, and preventing further in-stream gravel mining are postulated in order to arrest channel incision and reestablish the conditions for water and sediment storage on the floodplains.  相似文献   

15.
The purpose of this research is to study the temporal and spatial sediment delivery to and within the stream network following a wildfire on a chaparral watershed in Arizona, USA. Methods include interpretation of channel processes (aggradation, degradation) from sequential aerial photographs, field measurements of sediment delivery, and overland flow from ten microwatersheds having different vegetation cover (no vegetation, chaparral cover, and bare with vegetation buffer strips). The response of the watershed to the fire was very complex. The fire reduced the chaparral cover to zero in most locations and severe erosion led to filling of the channels by sediment. With vegetation recovery, sediment delivery from the watershed practically ceased. Vegetation buffer strips were mainly responsible for arresting the sediment delivered from bare hillslopes. Relatively clear water, entering the channels, caused degradation in the tributaries that delivered the sediment into the main stream at El Oso Creek. Due to high water infiltration by immense volumes of sediment deposits in the middle reach, the sediment from the tributaries was deposited as in-channel fans. In contrast, the upper reach of El Oso Creek behaved similarly to the tributaries. It aggraded after the fire and was followed by degradation. The low reach of El Oso Creek is degrading because it is still adjusting base level to the incision of the master stream. Implications of this study are that land managers, concerned to avoid severe erosion and sedimentation following disturbance, should concentrate on the establishment and enhancement of vegetation buffer strips along channel banks.  相似文献   

16.
Kroes, Daniel E. and Cliff R. Hupp, 2010. The Effect of Channelization on Floodplain Sediment Deposition and Subsidence Along the Pocomoke River, Maryland. Journal of the American Water Resources Association (JAWRA) 46(4): 686-699. DOI: 10.1111/j.1752-1688.2010.00440.x Abstract: The nontidal Pocomoke River was intensively ditched and channelized by the mid-1900s. In response to channelization; channel incision, head-cut erosion, and spoil bank perforation have occurred in this previously nonalluvial system. Six sites were selected for study of floodplain sediment dynamics in relation to channel condition. Short- and long-term sediment deposition/subsidence rates and composition were determined. Short-term rates (four years) ranged from 0.6 to 3.6 mm/year. Long-term rates (15-100+ years) ranged from −11.9 to 1.7 mm/year. 137Cs rates (43 years) indicate rates of 0.24 to 7.4 mm/year depending on channel condition. Channelization has limited contact between streamflow and the floodplain, resulting in little or no sediment retention in channelized reaches. Along unchannelized reaches, extended contact and depth of river water on the floodplain resulted in high deposition rates. Drainage of floodplains exposed organic sediments to oxygen resulting in subsidence and releasing stored carbon. Channelization increased sediment deposition in downstream reaches relative to the presettlement system. The sediment storage function of this river has been dramatically altered by channelization. Results indicate that perforation of spoil banks along channelized reaches may help to alleviate some of these issues.  相似文献   

17.
/ Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining  相似文献   

18.
Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances. We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience. Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes. Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.  相似文献   

19.
ABSTRACT: Bank erosion along a river channel determines the pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for riparian vegetation to get established. Migration also erodes existing riparian, agricultural, and urban lands, sometimes damaging human infrastructure (e.g., scouring bridge foundations and endangering pumping facilities) in the process. Understanding what controls the rate of bank erosion and associated point bar deposition is necessary to manage large alluvial rivers effectively. In this study, bank erosion was proportionally related to the magnitude of stream power. Linear regressions were used to correlate the cumulative stream power, above a lower flow threshold, with rates of bank erosion at 13 sites on the middle Sacramento River in California. Two forms of data were used: aerial photography and field data. Each analysis showed that bank erosion and cumulative effective stream power were significantly correlated and that a lower flow threshold improves the statistical relationship in this system. These correlations demonstrate that land managers and others can relate rates of bank erosion to the daily flow rates of a river. Such relationships can provide information concerning ecological restoration of floodplains related to channel migration rates as well as planning that requires knowledge of the relationship between flow rates and bank erosion rates.  相似文献   

20.
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil–water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30–40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号