首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ABSTRACT: Prior to PL95–87 little research had been conducted to determine the impacts of mining and reclamation practices on sediment concentrations and yields on a watershed scale. Furthermore, it was unknown whether sediment yield and other variables would return to undisturbed levels after reclamation. Therefore, three small watersheds, with differing lithologies and soils, were monitored for runoff and suspended sediment concentrations during three phases of watershed disturbances: undisturbed watershed condition, mining and reclamation disturbances, and post‐reclaimed condition. Profound increases in suspended‐sediment concentrations, load rates, and yields due to mining and reclamation activities, and subsequent drastic decreases after reclamation were documented. Even with increases in runoff potential, reductions in suspended‐sediment concentrations and load rates to below or near undisturbed‐watershed levels is possible by using the mulch‐crimping technique and by removing diversions. Maximum concentrations and load rates occurred during times of active disturbances that exposed loose soil and spoil to high‐intensity rains. Sediment concentrations remained elevated compared with the undisturbed watershed when diversions were not well maintained and overtopped, and when they were not removed for final reclamation. Diversions are useful for vegetation establishment, but should be maintained until they are removed for final reclamation after good vegetative cover is established.  相似文献   

2.
ABSTRACT: A study was conducted over a six-year period in East-Central Ohio to determine the effects of surface mining and reclamation on physical watershed conditions and on ground-water hydrology in three ground-water zones in three small experimental watersheds. Mining disturbances in watersheds adjacent to the experimental sites affected ground-water levels in the undisturbed experimental watersheds prior to actual mining in the experimental sites. New subsurface flow paths, with different characteristics, formed during mining and reclamation. At all three sites mining dewatered the saturated zone above the underclay of the mined coal seam. Mining and reclamation affected ground-water levels below the mined coal seam in the middle and lower zones within at least two sites. Ground-water level recovery in the mined upper saturated zone was slow and irregular both temporally and spatially after reclamation. Hydraulic conductivities of postmining (Phase 3) spoil were generally greater than those of Phase 1 bedrock, but wide spatial variability was observed. Modelers need to be aware of the complexities of new flow paths and physical characteristics of subsurface flow media that are introduced by mining and reclamation, including destruction of the upper-zone clay.  相似文献   

3.
ABSTRACT: A study was conducted to determine the effects of mining and reclaiming originally undisturbed watersheds on surface-water hydrology in three small experimental watersheds in Ohio. Approximately six years of data were collected at each site, with differing lengths of premining (Phase 1), mining and reclamation (Phase 2), and post-reclamation (Phase 3) periods. Mining and reclamation activities showed no consistent pattern iii base-flow, and caused slightly more frequent higher daily flow volumes. Phase 2 activities can cause reductions in seasonal variation in double mass curves compared with Phase 1. Restoration of seasonal variations was noticeably apparent at one site during Phase 3. The responses of the watersheds to rainfall intensities causing larger peak flow rates generally decreased due to mining and reclamation, but tended to exceed responses observed in Phase 1 during Phase 3. Natural Resources Conservation Service (NRCS) curve numbers increased due to mining and reclamation (Phase 2), ranging from 83 to 91. During Phase 3, curve numbers remained approximately constant from Phase 2, ranging from 87 to 91.  相似文献   

4.
ABSTRACT: A study was conducted to determine the effects of surface mining and reclamation on ground-water chemistry in three saturated zones in each of three small East-Central Ohio water-sheds. The extensive disturbances of mining and reclamation: (1) caused more changes in constituent concentrations in the upper zone than in lower zones, most of which were statistically significant increases (many were “drastic”); (2) affected ground-water chemistry in lower zones - those that were not physically disturbed; (3) tended to increase the frequency of exceedance of regulated constituents in all saturated zones; and (4) affected the chemistry of surface baseflow water at the watershed outlets. Several constituents were still changing at the end of the project within all sites and zones.  相似文献   

5.
ABSTRACT: Hydrologic records from six small Eastern Kentucky watersheds were analyzed to determine the effect of surface mining on storm flows and peak flows. Average storm flow volumes were not changed by surface mining, whereas average peak flows were increased 36 percent. Peak flow increases were only in the summer. Smaller peak flows are doubled; moderate ones are increased by about a third; peak flows around 100 csm seem to be largely unaffected; and the larger peak flows may have been reduced by surface mining. The maximum annual storm flows, usually in winter or spring, appeared slightly reduced. No time trend in either storm flows or peak flows could be detected in five years of postmining record. Surface mining is not a serious floodwater discharge problem.  相似文献   

6.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

7.
ABSTRACT: Multivariate analyses were used to develop equations that could predict certain water quality (WQ) conditions for unmonitored watersheds in Puerto Rico based on their physical characteristics. Long term WQ data were used to represent the WQ of 15 watersheds in Puerto Rico. A factor analysis (FA) was performed to reduce the number of chemical constituents. Cluster analysis (CA) was used to group watersheds with similar WQ characteristics. Finally, a discriminant analysis (DA) was performed to relate the WQ clusters to different physical parameters and generate predicting equations. The FA identified six factors (77 percent of variation explained): nutrients, dissolved ions, sodium and chloride, silicacious geology, red ox conditions, and discharge. From the FA, specific conductance, sodium, phosphorous, silica, and dissolved oxygen were selected to represent the WQ characteristics in the CA. The CA determined five groups of watersheds (forested, urban polluted, mixed urban/rural, forested plutonic, and limestone) with similar WQ properties. From the five WQ clusters, two categories can be observed: forested and urban watersheds. The DA found that changes in forest cover, percent of limestone, mean annual rainfall, and watershed shape factor were the most important physical features affecting the WQ of watersheds in Puerto Rico.  相似文献   

8.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

9.
ABSTRACT: Several chlorinated solvent plumes threaten the sole‐source aquifer underlying the Massachusetts Military Reservation at the western end of Cape Cod. Sensitive surface water features including ponds, cranberry bogs, and coastal wetlands are hydraulically connected to the aquifer. For one of the plumes (CS‐10 the original remedy of 120 extraction and reinjection wells has the potential for significant disruption of surface water hydrology, through the localized drawdown and mounding of the water table. Recirculating wells with in‐well air stripping offer a cost‐effective alternative to conventional pump‐and‐treat technology that does not adversely affect the configuration of the water table. Pilot testing of a two well system, pumping 300 gpm, showed a capture radius of > 200 feet per well, in‐well trichloroethylene (TCE) removal efficiencies of 92 to 98 percent per recirculation cycle, an average of three recirculation cycles within the capture zone, and no measurable effect on water table elevations at any point within the recirculation/treatment zone. During 120 days of operation, the mean concentration of TCE in the treatment zone was reduced by 83 percent, from 1,111 μg/l to 184 μg/l. Full‐scale design projections indicate that 60 wells at an average spacing of 160 feet, having an aggregate recirculation 11 MGD, can contain the CS‐b plume without ground water extraction or adverse hydraulic effects on surface water resources. The estimated capital costs for such a system are about $7 million, and annual operations‐and‐maintenance costs should be about $1.4 million, 40 percent of those associated with a pump and treat system over a 20‐year period.  相似文献   

10.
ABSTRACT: Spatial variation of five water quality variables were analyzed using composite water samples collected periodically from eight small watersheds (11.4–71.6 km2) in forested East Texas during 1977 through 1980. Based on 31 observations during the four-year period the average yield of nitrate-nitrite nitrogen (NNN), total kjeldahl nitrogen (TKN), total phosphorus (PO4), chloride (CHL), and total suspended sediment (TSS) were 1.43, 21.96, 3.09, 50.11, and 90.39 ka/ha/yr, respectively. Compared to the water quality standards of the U.S. Environmental Protection Agency (1976) and the Texas Department of Water Resources (1976) for CHL, TSS, and NNN, none of the observations exceeded the limits for public water supplies. The study showed that forested watersheds normally yielded stream flow with better quality than that from agricultural watersheds. Watersheds of greater percent of pasture area, mean slope, stream segment frequency, and drainage density produced greater concentrations for these five chemical parameters in water samples. Meaningful equations were developed for estimating mean average yields for each chemical parameter for each watershed with R2 ranging from 0.77 to 0.96 and standard error of estimates from 17 to 33 percent of the observed means.  相似文献   

11.
ABSTRACT: In the last 30 years, the National Resource Conservation Service's TR‐55 and TR‐20 models have seen a dramatic increase in use for stormwater management purposes. This paper reviews some of the data that were originally used to develop these models and tests how well the models estimate annual series peak runoff rates for the same watersheds using longer historical data record lengths. The paper also explores differences between TR‐55 and TR‐20 peak runoff rate estimates and time of concentration methods. It was found that of the 37 watersheds tested, 25 were either over‐ or under‐predicting the actual historical watershed runoff rates by more than 30 percent. The results of this study indicate that these NRCS models should not be used to model small wooded watersheds less than 20 acres. This would be especially true if the watershed consisted of an area without a clearly defined outlet channel. This study also supports the need for regulators to allow educated hydrologists to alter pre‐packaged model parameters or results more easily than is currently permitted.  相似文献   

12.
ABSTRACT: A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wet. land density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.  相似文献   

13.
ABSTRACT: This study employs a simple nonlinear statistical approach to establish nitrogen, phosphorus, and sediment concentration and unit area load thresholds to aid in the evaluation of aquatic biological health of watersheds within the state of Pennsylvania. Flow, nitrogen and phosphorus species, sediment, basin area, land cover, and biological assessment data were assembled for 29 Pennsylvania watersheds. For each watershed, rating curves depicting flow versus load relationships were developed using the U.S. Environmental Protection Agency's (USEPA's) storage and retrieval database (STORET) flow and concentration data, then applied to daily flow data obtained from U.S. Geological Survey (USGS) daily flow gauging stations to estimate daily load between 1989 and 1999. The load estimates and concentration data were then sorted into six sets of data: mean annual unit area nitrogen, phosphorus, and sediment loads; and average nitrogen, phosphorus, and sediment concentrations. Results of Mann‐Whitney tests conducted on each of the six datasets indicate that there is a statistically significant difference between the concentrations and unit area loads of nitrogen, phosphorus, and sediment in impaired and unimpaired watersheds. Concentration thresholds, calculated as the midpoint between the impaired and unimpaired watersheds’ 95 percent confidence interval for the median, were estimated to be 2.01 mg/L, 0.07 mg/L, and 197.27 mg/L for nitrogen, phosphorus, and sediment, respectively. Annual unit area load thresholds were estimated to be equal to 8.64 kg/ha, 0.30 kg/ha, and 785.29 kg/ha, respectively, for nitrogen, phosphorus, and sediment species.  相似文献   

14.
ABSTRACT: There is mounting evidence that increasing amounts of atmospheric carbon dioxide may lead to significant changes in global climate during the next century. The possible effects of such climatic changes on surface runoff in the Great Basin Region of the western United States has been investigated by applying water balance models to four watersheds in Nevada and Utah. The most probable change, a 2°C increase in average annual temperature coupled with a 10 percent decrease in precipitation, would reduce runoff from 17 to 28 percent of the present mean, with drier basins showing the greatest change. Decreasing precipitation by 25 percent causes runoff reductions of 33 to 51 percent. Equivalent changes to a cooler and wetter climate show corresponding increases in runoff of approximately the same magnitude, but such a shift is not considered likely. Based on projected water requirements for the year 2000, a change to a warmer and drier climate would cause severe water shortages in many parts of the Great Basin.  相似文献   

15.
ABSTRACT Spring runoff from two forested watersheds in northern Minnesota is a function of annual snowfall, soil water recharge, and water supply rates. A drainage basin with a clay soil and a hardwood overstory had greater snowmelt and water supply rates than another drainage basin with a sandy soil and conifer overstory. The average soil water recharge rate for the clay soil was 28 percent less than for the sandy soil. The lower recharge rate of the clay soil resulted in spring runoff which averaged 40 percent of water supplied during the three year study while an average of two percent was produced on the sandy soil. Soil frost which affected soil water recharge varied between soil types and was influenced by amount of soil water storage and snow cover.  相似文献   

16.
ABSTRACT: Vertical attenuation of photosynthetically active radiation (PAR) in clear waters of central Florida theoretically can vary almost 50 percent during a sunny summer day as a result of changing solar elevation. We used a simple formula to partially adjust the attenuation coefficient in Tampa Bay and Charlotte Harbor for changing solar elevation of the direct beam and then used multiple regression analysis to estimate the relative contribution of different water properties or constituents to the adjusted attenuation coefficient, kadj. Color, on an average, was responsible for 18 percent of kadj, chlorophyll a for 21 percent, nonchiorophyll suspended matter for 55 percent, and seawater for the remaining 6 percent. In both estuaries, kadj increased with decreasing salinity as a result of freshwater runoff adding color, suspended matter, and nutrients. Nutrients affected attenuation by stimulating phytoplankton growth and increasing concentrations of chlorophyll a. Reduced nutrient loading to upper Tampa Bay (Hilisborough Bay) in the early to mid-1980's appears to have decreased concentrations of chlorophyll a, increased water clarity, and increased seagrass recolonization. Assuming other attenuating substances remained unchanged, the decrease in the average concentration of chlorophyll a from 30 to 15 μg L?1 would correspond to an increase in the depth of light penetration necessary for seagrass survival (>10 percent incident light) from 1.0 to 1.5 m, which, on a relatively flat sea bed (slope of 2 m/km), would increase the area potentially available for seagram recolonization by 0.25 km2/km of shoreline.  相似文献   

17.
Effects of changing patterns of forest and impervious land covers on hydrologic regimes of watersheds were evaluated for urban and rural areas of the lower Cedar River drainage near Seattle, Washington. Land cover characterizations were used in a spatially explicit hydrology model to assess effects of land covers on watershed hydrology during presettlement conditions (full forest cover), 1991 and 1998. For the presettlement to 1991 period, urban watersheds showed decreases in forest covers (range 63% to 83%) and increases in impervious surfaces (range 43% to 71%). Rural watersheds showed similar patterns but smaller changes, with forest covers decreasing (range 28% to 34%) and impervious surfaces increasing (range 8% to 15%). For the 1991 and 1998 period, changes in forest covers for urban and rural watershed were <24%, with losses in some watersheds and regeneration in others. Impervious surfaces continued to increase, but increases were larger in rural (range 38% to 60%) than in urban watersheds (range 4% to 27%). Flood-frequency curves indicated that discharge rates (m sec–1) for all watersheds were higher in 1991 and 1998 than historical and suggested that chances for floods increase because of changing land covers. The largest increases in discharge rates were in urban watersheds, with rates for 2-year, 10-year, and 25-year recurrence intervals being more than two times greater than the rate during historical conditions. Changes in flow regimes were indicated by presettlement discharge levels of less frequent recurrence intervals (10-year and 25-year) occurring in posturbanization times (1991 and 1998) during more frequent intervals (2-year and 10-year). Normalized flows (m yr–1) of watersheds for 2-year, 10-year, and 25-year recurrence intervals indicate how flow regimes in 1991 and 1998 can change as functions of different areas of land covers. During 1991 and 1998, abrupt increases in flows occurred when forest covers were low (range 17% to 37%) and impervious surfaces were >46%. In contrast, the lowest flows occurred when forest covers were most extensive (range 59% to 81%) and impervious surfaces were <23%. We conclude that our use of spatial characterizations of impervious surfaces and forested covers in a spatially explicit hydrology model provides a robust approach for revealing how variations in different types and spatial distributions of land covers can affect flood regimes and flows of different watersheds.  相似文献   

18.
ABSTRACT: Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two‐component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.  相似文献   

19.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

20.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号