首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Yu QG  Chen YX  Ye XZ  Tian GM  Zhang ZJ 《Chemosphere》2007,69(5):825-831
The application of nitrogen fertilizers leads to various ecological problems such as nitrate leaching. The use of nitrification inhibitors as nitrate leaching retardants is a proposal that has been suggested for inclusion in regulations in many countries. In this study, using a multi-layer soil column device, the influence of new nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) was studied for understanding the nitrogen vertical transformation and lowering the nitrate leaching at different soil profile depths. The results indicated that, within 60 d of experiment, the regular urea added 1.0% DMPP can effectively inhibit the ammonium oxidation in the soil, and improve the ammonium concentration in soil solution over the 20cm depths of soil profile, while decline the concentrations of nitrate and nitrite. No obvious difference was found on ammonium concentrations in soil solution collected from deep profile under 20cm depths between regular urea and the urea added 1.0% DMPP. There was also no significant difference for the nitrate, ammonium and nitrite concentrations in the soil solution under 40cm depths of soil profile with the increasing nitrogen application level, among the treatments of urea added 1.0% DMPP within 60 d. It is proposed that DMPP could be used as an effective nitrification inhibitor in some region to control ammonium oxidation and decline the ion-nitrogen leaching, minimizing the shallow groundwater pollution risk and being beneficial for the ecological environment.  相似文献   

2.
Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile.  相似文献   

3.
Chen XM  Shen QR  Pan GX  Liu ZP 《Chemosphere》2003,50(6):703-706
The characteristics of nitrate horizontal transport in a major paddy soil, Wu Shan soil in the Tai Lake region, were studied. The concentration of nitrate during horizontal movement decreased with the increasing in distance from the tracer source, the change following a logarithmic function. The concentration of the nitrate was strongly correlated with the soil moisture content, as an exponential function. The horizontal transport velocity of nitrate was significantly correlated with the distance of the tracer source as power function. Therefore, the velocity of nitrate horizontal transport was controlled by the concentration gradient of nitrate, and soil water potential gradient from beginning to the 20 cm mark in the horizontal column. However, the velocity of nitrate horizontal was stable beyond 20 cm, where it was controlled by soil matric potential.  相似文献   

4.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   


5.
The effects of organic fertilization (sludge application) and/or different levels of Ni pollution on tomato fruit yield, quality, nutrition, and Ni accumulation were investigated. The mass loading of sewage sludge solids used in this study for the amendment of a calcareous soil with low organic matter content was 2% (w/w). A control with no sewage sludge amendment was also included (S). Nickel was added to the sludge amended soil at 0, 60, 120 and 240 mg kg-1 concentrations. Sewage sludge addition to the calcareous soil significantly increased fruit yield but did not adversely affect the quality and nutritional status of the tomato fruit. The results demonstrated that sewage sludge could be successfully used as a horticultural fertilizer. Only the highest addition rate of Ni (240 mg kg-1) to an organic amended calcareous soil had negative effects on fruit yield and quality, and caused a Ni accumulation in fruit that could be considered as a hazard for human health. Thus, no toxic problems will be encountered in tomato fruit due to Ni pollution provided the total Ni (soil Ni plus Ni incorporated with sludge amendment) concentration is kept below the maximum concentration of Ni allowed for agricultural alkaline soils in Spain (112 mg Ni kg-1).  相似文献   

6.
A soil column adsorption–desorption study was performed on an agricultural calcareous soil to determine the impact of sewage sludge spreading on nickel mobility. Ni adsorption experiments were followed by desorption tests involving the following liquid extractants: water, calcium (100 mg/L), oxalic acid (525 mg/L equivalent to 100 mg carbon/L), and sludge extracts (0.5 and 2.5 g/L). Desorption tests were also conducted after sewage sludge spreading at three application rates (30, 75, and 150 t/ha). According to the breakthrough curve, Ni adsorption was irreversible and occurred mainly through interactions with calcite surface sites. Nickel desorption from the soil column was promoted in presence of significant dissolved organic carbon (DOC) concentration as observed with oxalic acid elution and sludge extract at 2.5 g/L. In sludge-amended soil columns, the maximum Ni levels occurred in first pore volumes, and they were positively correlated to the sludge application rate. The presence of DOC in leaching waters was the main factor controlling Ni desorption from the sludge-amended soil columns. This finding implies that DOC generated by sludge applied on calcareous soils might facilitate the leaching of Ni due to the formation of soluble Ni–organic complexes. Thus, sludge application can have potential environmental impacts in calcareous soils, since it promotes nickel transport by decreasing Ni retention by soil components.  相似文献   

7.
The fate of polybrominated diphenyl ethers (PBDEs) in sewage sludge after agricultural application was analysed. This study was based on the analysis of sewage sludge and sludge amended soil samples collected during 2005. PBDE concentrations in sewage sludge ranged from 197 to 1185ng/g dry weight (dw), being deca-BDE-209 the predominant congener. PBDE levels in soils ranged between 21 and 690ng/g dw, being BDE-209 also the predominant congener in all soil samples. Sewage-sludge amendment at the research stations increased concentrations of all BDE congeners 1.2- to 45-fold, with the highest increases for BDE-209. Results obtained evidenced the cumulative effect of the sludge application rates. Moreover, high levels found at soils four years after the last sludge application indicate persistence of PBDEs in soils, including deca-BDE-209.  相似文献   

8.
Linear alkylbenzene sulphonate (LAS) is used at a rate of approximately 430,000 tons/y in Western Europe, mainly in laundry detergents. It is present in sewage sludge (70-5,600 mg/kg; 5-95th percentile) because of its high usage per capita, its sorption and precipitation in primary settlers, and its lack of degradation in anaerobic digesters. Immediately after amendment, calculated and measured concentrations are <1 to 60 mg LAS/kg soil. LAS biodegrades rapidly in soil with primary and ultimate half-lives of up to 7 and 30 days, respectively. Calculated residual concentrations after the averaging time (30 days) are 0.24-18 mg LAS/kg soil. The long-term ecotoxicity to soil microbiota is relatively low (EC10 >or=26 mg sludge-associated LAS/kg soil). An extensive review of the invertebrate and plant ecotoxicological data, combined with a probabilistic assessment approach, led to a PNEC value of 35 mg LAS/kg soil, i.e. the 5th percentile (HC5) of the species sensitivity distribution (lognormal distribution of the EC10 and NOEC values). Risk ratios were identified to fall within a range of 0.01 (median LAS concentration in sludge) to 0.1 (95th percentile) and always below 0.5 (maximum LAS concentration measured in sludge) according to various scenarios covering different factors such as local sewage influent concentration, water hardness, and sewage sludge stabilisation process. Based on the present information, it can be concluded that LAS does not represent an ecological risk in Western Europe when applied via normal sludge amendment to agricultural soil.  相似文献   

9.
蚯蚓处理污水污泥制取土壤改良剂   总被引:4,自引:1,他引:3  
将污水污泥和秸秆按不同比例混合后进行30 d预堆肥处理,然后在实验室条件下接种爱胜蚓(Eisenia fetida)开展60 d蚯蚓处理实验,研究污水污泥理化性质变化规律及其影响因素,并分析最终产品(蚯蚓粪)质量。结果表明,蚯蚓处理使污水污泥pH、有机碳(TOC)、C/N和病原菌含量显著降低,电导率(EC)升高,TN、TP、TK(总钾)、碱解氮、速效磷、速效钾分别升高26.8%~40.8%、26.7%~52.4%、25.9%~44.8%、43.0%~120.0%、88.6%~406.8%、38.2%~113.2%,发芽指数(GI)达到80%以上。由于基质分解矿化引起质量损失,使蚯蚓粪中重金属相对含量增加,但仍在土地改良允许范围内。蚯蚓放养密度和物料含水率及其交互作用对蚯蚓处理效果存在显著影响,处理污水污泥的最优工况为:放养密度2.5 kg/m2、含水率60%。堆肥-蚯蚓处理组合工艺可将污水污泥转化为无害的、有价值的土壤改良剂。  相似文献   

10.
Remediation of metal contaminated soil with mineral-amended composts   总被引:10,自引:0,他引:10  
This study examined the use of two composts derived from green waste and sewage sludge, amended with minerals (clinoptilolite or bentonite), for the remediation of metal-contaminated brownfield sites to transform them into greenspace. Soils contaminated with high or low levels of metals were mixed with the mineral-enhanced composts at different ratios and assessed by leaching tests, biomass production and metal accumulation of ryegrass (Lolium perenne L.). The results showed that the green waste compost reduced the leaching of Cd and Zn up to 48% whereas the composted sewage sludge doubled the leachate concentration of Zn. However, the same soil amended with composted sewage sludge showed an efficient reduction in plant concentrations of Cd, Cu, Pb or Zn by up to 80%. The results suggest that metal immobilisation and bioavailability are governed by the formation of complexes between the metals and organic matter. The amendment with minerals had only limited effects.  相似文献   

11.
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress.
Graphical abstract Origin, fate and behavior of sewage sludge fertilizer
  相似文献   

12.
Sewage sludges are frequently used as soil amendments due to their high contents of organic matter and nutrients, particularly N and P. However, their effects upon the chemistry of soil humic acids, one of the main components of the soil organic matter, need to be more deeply studied in order to understand the relation between organic matter structure and beneficial soil properties. Two sewage sludges subjected to different types of pre-treatment (composted and thermally dried) with very different chemical compositions were applied for three consecutive years to an agricultural soil under long-term field study. Thermal analysis (TG–DTG–DTA) and solid-state 13C NMR spectroscopy were used to compare molecular and structural properties of humic acids isolated from sewage sludges, and to determine changes in amended soils. Thermally dried sewage sludge humic acids showed an important presence of alkyl and O/N-alkyl compounds (70%) while composted sludge humic acids comprised 50% aromatic and carbonyl carbon. In spite of important differences in the initial chemical and thermal properties of the two types of sewage sludges, the chemical and thermal properties of the soil humic acids were quite similar to one another after 3 years of amendment. Long-term application of both sewage sludges resulted in 80–90% enrichment in alkyl carbon and organic nitrogen contents of the soil humic acid fraction.  相似文献   

13.
《Chemosphere》2009,74(11):1838-1844
Sewage sludges are frequently used as soil amendments due to their high contents of organic matter and nutrients, particularly N and P. However, their effects upon the chemistry of soil humic acids, one of the main components of the soil organic matter, need to be more deeply studied in order to understand the relation between organic matter structure and beneficial soil properties. Two sewage sludges subjected to different types of pre-treatment (composted and thermally dried) with very different chemical compositions were applied for three consecutive years to an agricultural soil under long-term field study. Thermal analysis (TG–DTG–DTA) and solid-state 13C NMR spectroscopy were used to compare molecular and structural properties of humic acids isolated from sewage sludges, and to determine changes in amended soils. Thermally dried sewage sludge humic acids showed an important presence of alkyl and O/N-alkyl compounds (70%) while composted sludge humic acids comprised 50% aromatic and carbonyl carbon. In spite of important differences in the initial chemical and thermal properties of the two types of sewage sludges, the chemical and thermal properties of the soil humic acids were quite similar to one another after 3 years of amendment. Long-term application of both sewage sludges resulted in 80–90% enrichment in alkyl carbon and organic nitrogen contents of the soil humic acid fraction.  相似文献   

14.
In situ fixation of metals in soils using bauxite residue: chemical assessment   总被引:24,自引:0,他引:24  
Contamination of soils with heavy metals and metalloids is a widespread problem all over the world. Low cost, non-invasive, in situ technologies are required for remediation processes. We investigated the efficiency of a bauxite residue (red mud) to fix heavy metals in two soils, one contaminated by industrial activities (French soil), and one by sewage sludge applications (UK soil). This Fe-oxide rich material was compared with lime, or beringite, a modified aluminosilicate that has been used for in situ fixation processes. Four different crop species were successively grown in pots. Metal concentrations in the soil pore waters were analyzed during the growing cycles. At the end of the experiment fluxes of heavy metals were measured using a diffusive gradient in thin film technique (DGT). Furthermore, a sequential extraction procedure (SEP) and an acidification test were performed to investigate the mechanisms of metal fixation by different soil amendments. In both soils, the concentrations of metals in the soil pore water and metal fluxes were greatly decreased by the amendments. An application of 2% red mud performed as well as beringite applied at 5%. Increasing soil pH was a common mechanism of action for all the amendments. However, the red mud amendment shifted metals from the exchangeable to the Fe-oxide fraction, and decreased acid extractability of metals. The results suggest that specific chemisorption, and possibly metal diffusion into oxide particles could also be the mechanisms responsible for the fixation of metals by red mud.  相似文献   

15.
In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)–soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0–75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15–45%, and then an increasing trend from compost application of 45–75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30–75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ?45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony–soil ecosystems.  相似文献   

16.
不同改性剂改善污泥土工性质的比较研究   总被引:2,自引:1,他引:1  
选择了泥土、矿化垃圾、粉煤灰和建筑垃圾4种改性剂改性城市污水处理厂污泥(以下简称污泥)。结果表明:(1)随着4种改性剂与污泥的混合比增大,混合物含水率降低。(2)当混合比为0.7(质量比)时,各种混合物的抗压强度都达到50kPa的填埋要求;当混合比为0.3~1.0时,混合物的抗压强度随着混合比的增大呈指数形式增大;比较4种改性剂对抗压强度的增大能力,粉煤灰最强,建筑垃圾次之,泥土和矿化垃圾较弱。(3)在50kPa预压力下,混合物要达到不小于25kPa的抗剪强度,泥土与污泥最小混合比为1.0,矿化垃圾与污泥最小混合比为1.0,粉煤灰与污泥最小混合比为0.7,建筑垃圾与污泥最小混合比为0.7。(4)除加泥土的混合物外,混合物压缩系数随着混合比的增大呈总体下降趋势。(5)粉煤灰除臭效果最好,矿化垃圾次之,建筑垃圾较差,泥土最差。  相似文献   

17.

Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg?1 rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L?1 Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg?1 soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg?1 manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg?1), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.  相似文献   

18.
The aim of the study was to determine if an As-contaminated soil, stabilized using zerovalent iron (Fe0) and its combination with gypsum waste, coal fly ash, peat, or sewage sludge, could be used as a construction material at the top layer of the landfill cover. A reproduction of 2 m thick protection/vegetation layer of a landfill cover using a column setup was used to determine the ability of the amendments to reduce As solubility and stimulate soil functionality along the soil profile. Soil amendment with Fe0 was highly efficient in reducing As in soil porewater reaching 99 % reduction, but only at the soil surface. In the deeper soil layers (below 0.5 m), the Fe treatment had a reverse effect, As solubility increased dramatically exceeding that of the untreated soil or any other treatment by one to two orders of magnitude. A slight bioluminescence inhibition of Vibrio fischeri was detected in the Fe0 treatment. Soil amendment with iron and peat showed no toxicity to bacteria and was the most efficient in reducing dissolved As in soil porewater throughout the 2 m soil profile followed by iron and gypsum treatment, most likely resulting from a low soil density and a good air diffusion to the soil. The least suitable combination of soil amendments for As immobilization was a mixture of iron with coal fly ash. An increase in all measured enzyme activities was observed in all treatments, particularly those receiving organic matter. For As to be stable in soil, a combination of amendments that can keep the soil porous and ensure the air diffusion through the entire soil layer of the landfill cover is required.  相似文献   

19.
Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg(-1) rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L(-1) Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg(-1) soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg(-1) manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg(-1)), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.  相似文献   

20.
生物通风技术修复柴油污染土壤的土柱模拟实验   总被引:1,自引:0,他引:1  
生物通风技术是将土壤气相抽提和生物降解结合起来的原位强迫氧化降解方法,对于修复因地下储油罐泄漏引起的土壤污染具有广阔的应用前景。通过室内土柱模拟柴油泄漏污染土壤,分析了不同历时残余总石油烃(total pe-troleum hydrocarbon,TPH)的平衡分布规律以及土壤中不同深度柴油量、总柴油量的变化。结果表明:(1)各柱残余TPH剖面分布差异的原因受土柱的初始装填情况的影响较大;(2)残余TPH平衡分布曲线呈双峰型的土柱,柴油的去除主要以挥发作用及生物降解作用为主;(3)挥发作用主要是由通风孔隙体积数及土壤含水率来影响的;重力作用则主要是由初始油浓度、土壤含水率、C∶N∶P影响的;除通风方式外,其余4个因素都对生物降解作用有影响;(4)初始油浓度较大,土壤含水率较小的柱8和柱11,生物降解作用最明显,柴油去除效果最好。该成果可为生物通风过程的强化提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号