首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 114 毫秒
1.
腐蚀对30CrMnSiNi2A钢结构疲劳寿命的影响   总被引:4,自引:1,他引:4  
采用周期浸润加速腐蚀试验与疲劳试验相结合的方法,研究了腐蚀及腐蚀与疲劳交替作用对某型飞机30CrMnSiNi2A机翼主梁疲劳寿命的影响.结果表明,腐蚀环境的影响会引起30CrMnSiNi2A高强度结构钢的疲劳寿命明显降低.与未腐蚀状态相比,预腐蚀5、10、15天后,某型飞机机翼主梁模拟件的平均疲劳寿命分别下降了17.3%、20.5%、33.2%;而在腐蚀与疲劳交替作用下,其平均疲劳寿命下降了22.8%.在给定的腐蚀环境和疲劳载荷谱作用下,平均疲劳寿命N50随预腐蚀时间t的变化可以用N50=1044.541-219.978t描述.  相似文献   

2.
30CrMnSiNi2A超强钢激光熔覆修复试验研究   总被引:3,自引:0,他引:3  
目的研究激光熔覆技术,解决30CrMnSiNi2A钢制部件表面腐蚀、划伤、裂纹等缺陷的修复问题。方法利用光纤激光器在30CrMnSiNi2A钢表面进行同基体相近成分的合金粉末熔覆试验,优化激光熔覆工艺参数,开展熔覆层的微观组织、硬度、力学性能等方面试验研究,并对拉伸试样的断口进行分析。结果熔覆层与基体呈现牢固的冶金结合,基体热影响区域小,熔覆区的抗拉强度大于基体强度的80%,熔覆区材质的脆性较基材有所增加。结论激光熔覆可用于修复30CrMnSiNi2A钢制零件表面的腐蚀、划伤、裂纹等局部缺陷。  相似文献   

3.
合金钢螺栓海洋气候环境适应性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
目的研究海洋气候环境对合金钢螺栓的影响。方法开展合金钢螺栓海南万宁试验站为期24个月的远海户外暴露试验,通过环境扫描电镜(ESEM)和自带的能谱仪(EDS)、拉伸和疲劳力学性能试验机、动电位极化(PC)研究合金钢螺栓力学性能、宏观形貌、微观形貌和腐蚀产物变化。结果户外暴露24个月后,合金钢螺栓破坏剪力下降了3.4%,破坏拉力下降了7.7%,疲劳寿命下降了41.3%。结论合金钢户外暴露24个月后发生全面腐蚀,腐蚀对螺栓破坏拉力及破坏剪力性能影响不大,对螺栓疲劳寿命下降影响较大。  相似文献   

4.
目的研究2024铝合金两种连接形式在5%NaCl盐雾环境下的腐蚀疲劳性能。方法开展2024铝合金两种连接结构在5%NaCl盐雾环境下的腐蚀疲劳试验,采用"腐蚀环境-疲劳加载"交替循环的试验模式,通过试验测试铝合金两种连接形式在5%NaCl盐雾环境下的残余疲劳寿命值,分析连接方式对铝合金连接结构的残余疲劳寿命影响。结果 5%NaCl盐雾环境对于铝合金连接结构疲劳寿命有较大影响,相较于铝制铆接连接形式,钢制螺栓连接方式连接部位的涂层破坏较少,涂层防护效果更好,疲劳寿命降低量更少。结论金属结构连接形式与防护涂层的搭配对结构耐腐蚀性能有重要影响。  相似文献   

5.
目的 提出以反映结构材料疲劳性能的DFR为表征参量,研究建立2024-T3铝合金结构在大气自然环境预腐蚀与实验室加速试验预腐蚀后的DFR关系,为腐蚀环境下飞机铝合金结构的疲劳寿命设计提供方法。方法 以2024-T3铝合金试验件为研究对象,分别开展典型海洋大气环境自然暴露腐蚀后的DFR试验以及实验室加速腐蚀试验后的DFR试验,以DFR相等为条件,建立上述2种不同预腐蚀条件之间的DFR当量加速关系。结果 2024-T3铝合金在自然暴露预腐蚀环境与实验室加速预腐蚀后的DFR值随腐蚀时间的增加均有不同程度的下降,万宁和青岛的DFR当量加速值分别为0.642 1、0.701 2 a/d。结论 基于DFR的当量加速关系综合反映了预腐蚀对结构材料疲劳性能退化的影响,而DFR是飞机结构疲劳设计的基本参量,文中建立的当量加速关系可用于指导腐蚀环境下铝合金的疲劳寿命设计分析。  相似文献   

6.
目的通过断口定量分析获得7A09铝合金的疲劳裂纹扩展规律,为7A09铝合金结构的寿命评估提供依据。方法使用EXCO溶液对试验件进行预腐蚀,利用疲劳拉伸机进行疲劳加载直至断裂,使用扫描电镜对疲劳断口进行定量化分析。结果疲劳裂纹在试件的腐蚀坑处萌生,从自由界面附近向纵深发展导致试件的断裂。通过断口分析和Paris公式确定了裂纹的萌生寿命和扩展寿命。结论腐蚀之后的试件裂纹萌生寿命占总寿命的比例下降,当裂纹扩展程度较大之后,受腐蚀影响减轻,得出裂纹扩展速率和应力强度因子的关系。  相似文献   

7.
目的研究2024铝合金在5%NaCl盐雾环境下的腐蚀疲劳性能。方法开展2024铝合金5%NaCl盐雾环境下的腐蚀疲劳试验,采用"疲劳加载-腐蚀环境"交替循环的试验模式,通过试验测试铝合金铆接结构在5%NaCl盐雾环境下的腐蚀疲劳寿命值,分析不同疲劳载荷大小对铝合金连接结构的腐蚀疲劳寿命影响。结果 5%NaCl盐雾环境对于铝合金铆接结构疲劳寿命有较大影响,疲劳载荷对防护涂层防护性能和腐蚀疲劳载荷的滞后效应等两方面影响,0.25P破坏载荷相较于0.3P破坏载荷,涂层防护作用影响更小,低载锻炼效应更强,腐蚀疲劳寿命降低量更少。结论 2024铝合金铆接结构耐腐蚀性能与结构载荷和防护涂层特性有重要关系。  相似文献   

8.
在实验室环境下对LY12CZ铝合金试验件进行溶液浸泡预腐蚀试验,产生腐蚀坑,使用KH-7700显微镜获得了不同腐蚀时间和腐蚀温度条件下的损伤数据,然后进行疲劳加载试验,建立了不同腐蚀时间和腐蚀温度与疲劳寿命之间的关系。试验结果表明,腐蚀时间和温度对铝合金的预腐蚀损伤及相应的疲劳寿命有着显著影响。  相似文献   

9.
研究了1420合金在不同腐蚀介质环境下的预腐蚀疲劳性能。在加速腐蚀环境下,预腐蚀对1420合金的疲劳性能影响较小;加速腐蚀5周样品未出现明显腐蚀痕迹,而11周有腐蚀痕迹出现.并且疲劳寿命曲线略有降低。在剥蚀环境下,预腐蚀对1420合金的疲劳性能影响很大;蚀液浸泡24h样品表面有剥蚀坑出现,剥蚀导致疲劳寿命迅速降低。剥蚀液浸泡72h样品的疲劳寿命只有118周次。  相似文献   

10.
预腐蚀典型铆接结构疲劳寿命特性研究   总被引:2,自引:0,他引:2  
通过设计LY12-CZ材料的典型铆接结构试验件与模拟现役飞机的地面停放环境,完成加速试验环境谱下的预腐蚀试验与不同时间预腐蚀后试验件的等幅疲劳试验,最终获得预腐蚀典型铆接结构疲劳寿命特性与疲劳寿命的影响系数C(t)曲线。  相似文献   

11.
某型复合材料加速腐蚀与大气腐蚀当量关系分析   总被引:2,自引:1,他引:1  
目的为开展某型飞机复合材料预腐蚀后疲劳寿命研究,获取其于加速腐蚀试验环境谱腐蚀和大气环境腐蚀的当量关系。方法编制模拟机场环境的加速腐蚀环境谱,据此分别开展材料试件加速腐蚀试验和大气腐蚀试验,试验过程中观测试件腐蚀形貌,开展两种环境预腐蚀后试件的层间剪切强度性能测试,依据等腐蚀损伤等层间剪切强度性能原则,计算该型复合材料实验室加速腐蚀与大气环境腐蚀的当量关系。结果加速腐蚀试验环境与大气环境对该型复合材料腐蚀存在当量关系,当量折算系数为2.22。结论飞机复合材料于不同环境中的腐蚀当量关系研究应结合研究问题需要,根据不同环境和不同力学性能指标开展研究,不同环境、不同力学性能指标会有不同的当量关系。  相似文献   

12.
目的研究拉压疲劳载荷对地面停放腐蚀影响系数的影响。方法首先编制加速腐蚀试验环境谱进行预腐蚀试验,随后对预腐蚀后的试验件加载拉压疲劳载荷进行疲劳试验,最后对预腐蚀疲劳试验得到的寿命进行数据分析。结果疲劳载荷无论是拉还是压,都不能改变预腐蚀后的疲劳试验寿命服从对数正态分布的性质,但是疲劳载荷以拉为主的机翼下壁板试验件预腐蚀后,疲劳寿命的分散性随试验寿命的降低而降低,而疲劳载荷以压为主的机翼上壁板结构模拟件预腐蚀后,疲劳寿命的分散性基本不变。结论疲劳载荷以压为主的机翼上壁板结构模拟件的地面停放腐蚀影响系数不随腐蚀年限的增加而变化,而疲劳载荷以拉为主的机翼下壁板试验件的地面停放腐蚀影响系数随腐蚀年限的增加而显著降低。  相似文献   

13.
腐蚀损伤对典型铝合金结构疲劳寿命的影响研究   总被引:5,自引:4,他引:1       下载免费PDF全文
目的研究严酷服役条件下飞机结构的寿命衰减问题。方法以飞机关键结构模拟件为研究对象,基于编制的某机场环境加速试验谱进行当量加速腐蚀试验,采用MTS810材料试验系统进行预腐蚀后的疲劳试验。结果通过对试验结果的分析,确定了关键结构疲劳寿命腐蚀影响系数与腐蚀损伤尺寸之间的对应关系。结论关键结构腐蚀损伤宽度与疲劳寿命腐蚀影响系数相关性最好。  相似文献   

14.
目的研究军用飞机高强螺栓在模拟海洋大气环境下的疲劳极限变化。方法采用中性盐雾试验对30CrMnSiA高强螺栓进行预腐蚀试验,试验持续时间为360 h,而后再进行96 hCASS试验。腐蚀后对样品进行疲劳试验,并与未腐蚀的样品进行S-N曲线对比分析,并分析其疲劳断口形貌变化。结果在进行盐雾试验后螺栓发生腐蚀,疲劳极限降低28.4%。结论军用飞机用高强螺栓在模拟海洋大气环境下易发生腐蚀,疲劳极限出现明显降低现象,其主要原因为疲劳试验有效面积减少。  相似文献   

15.
目的建立铝合金预腐蚀疲劳裂纹扩展模型。方法采用表征局部环境腐蚀损伤影响程度的参数孔蚀率对腐蚀疲劳裂纹扩展速率进行修正。结果修正后的腐蚀铝合金试件的疲劳裂纹扩展速率与试验结果吻合程度良好。结论修正后的铝合金预腐蚀疲劳裂纹扩展速率模型合理有效,试验数据和预测模型可为海军飞机结构的损伤容限设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号