首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Objective of the work was to experimentally determine the effect of the organic matter and moisture contents on the calorific value of organic solid wastes. Nine substrates (i.e. newsprint, biodried municipal solid wastes, municipal solid waste derived composts, wastewater sludges, and sea weed derived compost), with organic matter contents that ranged from 12% to 91% (dry weight) were used in the experiments. All substrates were dried and ground and deionized water was artificially added in order to achieve certain target moisture contents per substrate. The higher heating value (HHV) was, then, determined experimentally for each sample using a bomb calorimeter. Best reduced models were developed to describe the higher and lower heating values as a function of organic matter, ash and moisture contents. A triangular plot was constructed and the self-sustained combustion area was determined and compared to that of the Tanner diagram. Response surfaces were drawn to visually assess the effect of organic matter and moisture contents on the calorific value of the wastes.  相似文献   

2.
Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction.  相似文献   

3.
This paper presents the results of a laboratory investigation to determine the geotechnical properties of fresh municipal solid waste (MSW) collected from the working phase of Orchard Hills Landfill located in Davis Junction (Illinois, USA). Laboratory testing was conducted on shredded MSW to determine the compaction, hydraulic conductivity, compressibility, and shear strength properties at in-situ gravimetric moisture content of 44%. In addition, the effect of increased moisture content during leachate recirculation on compressibility and shear strength of MSW was also investigated by testing samples with variable gravimetric moisture contents ranging from 44% to 100%. Based on Standard Proctor tests, a maximum dry density of 420 kg/m(3) was observed at 70% optimum moisture content. The hydraulic conductivity varied in a wide range of 10(-8)-10(-4)m/s and decreased with increase in dry density. Compression ratio values varied in a close range of 0.24-0.33 with no specific trend with the increase in moisture content. Based on direct shear tests, drained cohesion varied from 31 to 64 kPa and the drained friction angle ranged from 26 to 30 degrees. Neither cohesion nor friction angle demonstrated any correlation with the moisture content, within the range of moisture contents tested. The consolidated undrained triaxial shear tests on saturated MSW showed the total strength parameters (c and phi) to be 32 kPa and 12 degrees, and the effective strength parameters (c' and phi') to be 38 kPa and 16 degrees. The angle of friction (phi) decreased and cohesion (c) value increased with the increase in strain. The effective cohesion (c') increased with increase in strain; however, the effective angle of friction (phi') decreased first and then increased with the increase in strain. Such strain-dependent shear strength properties should be properly accounted in the stability analysis of bioreactor landfills.  相似文献   

4.
5.
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2× after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property.  相似文献   

6.
As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.  相似文献   

7.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

8.
Laboratory tests using 240 mm diameter columns were conducted to study fines migration in conditions that simulate daily soil covers in Hong Kong municipal solid waste landfills. Five factors suspected to affect fines migration were examined: moisture content at soil compaction, overburden pressure, pumping rate, cover thickness, and soil-waste interface condition. The results show that moisture content at compaction, cover thickness, and soil-waste interface are the most influential parameters on fines migration in completely decomposed granite daily covers. The measured equivalent sizes of migratory fines from the soil covers were in the range of 4–140 μm. The majority of migratory fines migrated during first permeations, representing 64–86% of the total by mass. Larger particles tended to migrate from the soil mass during the saturation process. In a typical run, about 0.0018% of the total cover soil (by dry weight) was washed out during a typical 1 h rainfall event. The results of the laboratory studies point to important engineering implications on the operation of local MSW landfills regarding the use of sandy daily covers.  相似文献   

9.
Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH(4) and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH(4) can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH(4) was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH(4) oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 degrees C.  相似文献   

10.
Combustion studies of high moisture content waste in a fluidised bed   总被引:1,自引:0,他引:1  
The combustion of three high moisture content waste materials in a fluidised bed combustor has been investigated and a comparison with co-firing of these materials with coal in the same combustor has been made. Waste materials burnt were olive oil waste, municipal solid waste and potato, which is representative of vegetable waste. Mixtures of up to 20% mass concentration water in the waste were fed to the combustor. Above that value the moisture content was too high to sustain combustion without addition of coal. Measurements of CO, NOx, SO2 temperatures were made and the carbon combustion efficiency evaluated. Co-firing with coal resulted in markedly higher combustion efficiencies with an increase of approximately 10-80% when burning the simulated MSW. However, this was much lower than the value of 93% when coal was burnt on its own. It was also much lower than the value obtained, average 90%, when co-firing potato and olive oil waste with coal and there was little difference in the combustion efficiency between the two types of waste and with increasing moisture content. It was concluded that the high ash content of the simulated MSW 26%, compared with 5% in the other two waste materials resulted in slower burning and consequently the char particles were elutriated from the bed without being fully burnt. In term of gaseous emissions during co-combustion, CO emission is relatively insensitive to change in waste fraction. While emission of SO2 can be reduced as the waste fraction increases as a result of fuel-S dilution. But in terms of percent fuel-S converted, it is actually increased by increasing waste fraction. Emissions of NO and N2O increase slightly with MSW fraction.  相似文献   

11.
Portland cement (CEMI) was used to solidify air pollution control (APC) residues from an energy-from-waste plant burning municipal solid waste. APC residue/CEMI mixes were prepared with CEMI additions ranging from 0 to 50 weight% (wt%) of total dry mass and water/solids ratios between 0.40 and 0.80. Isothermal conduction calorimetry was used to assess the effect of APC residues on the hydration of CEMI. Although up to 30wt% additions of APC residues accelerated CEMI hydration, the total heat of hydration during the initial 98h was significantly reduced. Higher levels of APC residues severely inhibited CEMI hydration. The consistence, setting time, compressive strength, porosity and chloride leaching characteristics of the solidified products were determined. As might be expected, increasing the CEMI addition and reducing the water content resulted in increased compressive strengths. All mixes achieved compressive strengths greater than 1MPa at 7 and 28days but only 50wt% samples did not show significant strength reduction when tested after immersion in water. Monolithic leaching tests indicated low physical immobilisation of chloride in the CEMI solidified APC residues, with chloride leaching in excess of relevant UK landfill waste acceptance criteria (WAC). The results of this study show that greater than 50% CEMI additions would be required to effectively treat APC residues to meet current WAC limits.  相似文献   

12.
Source-separated collection system of household food waste has been implemented national wide in South Korea. Food waste recycling rate that means conversion rate to recycle is over 90 % in present. However, over the value of 90 %, we need to enhance the efficiency of food waste recycling process. We analyzed material flow of 24 food waste recycling facilities and calculated solid recovery rate to key-process. We found that 3–13 % of the solids from food waste outflows with foreign materials and 27–33 % of the solids outflow with wastewater. As a result, solid recovery rates are 65.3, 60.9, and 56.3 % in wet feed facility, dry feed facility, and composting facility, respectively. Alternative ways to recovery solid from wastewater or collection tools to exclude plastic bags, salt, and moisture content are required to make food waste recycling more efficient.  相似文献   

13.
The objective of this study was to characterize the anaerobic biodegradation of food waste, including its methane potential and the anaerobic toxicity of leachate associated with food waste decomposition. Biodegradation experiments were conducted in 2.2-litre reactors and were seeded with well-decomposed refuse. Despite pH neutralization, reactors seeded with 30% old refuse failed to undergo methanogenesis. Food waste in a second set of reactors, containing 70% seed, produced 300.7 ml CH4dry g−1. Leachate toxicity was evaluated by a modified anaerobic toxicity assay (ATA). The results of ATAs were typically consistent with the methane production behavior of the reactors. However, the toxicity observed in the ATA test could not be simulated with synthetic leachate containing high concentrations of carboxylic acids and sodium. Tests with 20, 5, 15 and 12 g l−1of acetate, propionate, butyrate and sodium, respectively, suggested that high concentrations of butyric acid and sodium inhibited the onset of methane production but that refuse micro-organisms could acclimatize to these concentrations within 5–10 days. The refuse ecosystem was shown to tolerate higher concentrations of undissociated carboxylic acids than previously reported for anaerobic digesters.  相似文献   

14.
To investigate the feasibility of using aged municipal solid waste as farmland soil, it is essential to study its nutritive compositions for plant growth. Previous studies have demonstrated that the properties of different particle-size aged refuse are very different, therefore, the present study was conducted to evaluate the adequacy of three elements (N, P, K) and the fractionation of inorganic P in the aged refuse with a particle-size distribution of 900 to 300, 300 to 150, 150 to 105, 105 to 90 and 90 to 0 μm. The results indicate that (1) total quantities of N, P, K were much larger than that in the general soil and the quantities of available N, P and K were also adequate; (2) total content of P was sufficient, but the ratio of available-P to total P was not high enough; (3) with the decrease of particle size, the contents of these elements presented different trends. The results implicate that total contents of N, P and K were enough for the aged refuse being exploited as cultivated soil, and different gradation of aged refuse could be added to improve poor soils. It provides scientific evidence for utilizing different particle-size aged refuse comprehensively.  相似文献   

15.
This research investigated transient water flow in unsaturated municipal solid waste (MSW) packed in columns using neutron scattering. The method developed was able to measure absolute moisture content and moisture variation in a sample of MSW produced in the city of Fortaleza (Brazil) during a simulated tropical rain event. The technique was proven to be efficient, showing that channeling flow accounts for most of the unsaturated flow conditions. The most important effect of micro-porous flow was on water accumulation and small long-term outflow. Furthermore, the definition of field capacity used in soil sciences does not seem to apply to flow in unsaturated MSW; the MSW layers kept increasing in moisture content long after water was allowed through. Finally, the long-term draining experiment demonstrated that the macro-porous matrix may not be a continuous medium, which makes experimental procedures that rely on matrix potential in specific points of the solid waste mass inaccurate.  相似文献   

16.
Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics.  相似文献   

17.
Five different fractions of the biodegradable municipal solid waste (BMSW) were evaluated as potential animal feedstuffs. For each source of waste (meat waste (MW), fish waste (FW), fruit and vegetables waste (FVW), restaurant waste (RW), household waste (HW)), samples were obtained from small shops (butchers, fishmongers, fruit and vegetable shops), restaurants and a MSW treatment plant (household waste). The chemical composition, microbiological characterization, dioxins, furans, PCB's and mineral content were determined for every type of waste fraction. The analysed biodegradable waste presented high moisture content (from 60% to 90%). Some fractions were dense in one nutrient: meat waste in ether extract, fish waste in crude protein, fruit and vegetable waste in nitrogen free extract. The other studied fractions (restaurant fraction and household fraction) presented a more balanced composition, but the presence of toxic concentrations of contaminants such as metals was higher than European legislation permitted values in animal feeding. From a microbiological standpoint, a heat treatment at 65 degrees C for 20 min was sufficient to ensure microbiological quality of the samples. This treatment was also advisable to reduce the moisture content: a lower moisture content facilitates the waste handling and processing and, therefore, the inclusion of these waste fractions in commercial animal diets. This paper presents a potential alternative for the recovery of organic matter content in municipal solid waste. The results obtained in this research and the feedstuffs legislation in force related to animal feed, indicated that some of the studied biodegradable waste fractions (meat waste, fruit and vegetable waste and fish waste) could be considered as alternatives to typical raw materials used in animal feeds.  相似文献   

18.
The high cost of landfilling and the potential uses of waste foundry sands have prompted research into their beneficial reuse. Roadways have a high potential for large volume usage of the foundry sands. A laboratory testing program was conducted on soil-foundry sand mixtures amended with cement and lime to assess their applicability as highway subbase materials. The mixtures were compacted in the laboratory at a variety of moisture contents and compactive efforts and subjected to unconfined compression, California bearing ratio, and hydraulic conductivity tests. The environmental suitability of the prepared mixtures was evaluated by analyzing the effluent collected during hydraulic conductivity tests. Finally, required subbase thicknesses were calculated using the laboratory-based strength parameters. The results of the study show that the strength of a mixture is highly dependent on the curing period, compactive energy, lime or cement presence, and water content at compaction. The resistance of foundry sand-based specimens to winter conditions is generally better than that of a typical subbase reference material. Laboratory leaching tests indicated that if these mixtures later come in contact with water that has been discharged directly to the environment (e.g., drainage through asphalt pavement), the quality of water will not be affected.  相似文献   

19.
Some urban solid waste landfill sites in Spain are located on geological substrates of gypsiferous lithology. Although this type of substrate is assumed to be of low permeability, it can develop secondary pores by dissolution and, under favourable environmental conditions, form a karstic system that may pose serious geotechnical problems in the medium and long term. The purpose of this work was to study alterations caused by selective tests in various sections of a gypsum lithological column obtained from the Colmenar de Oreja landfill site (Spain). The tests were used to assess the influence of individual environmental factors and involved the addition of milli-RO water, solutions containing a 1%, 5% or 10% concentration of landfill leachate, and 2, 5, 10 and 15 mg l?1 solutions of NaCl in successive immersion–drying cycles at ?15, 20 or 60 °C. Differences in alterability between the six studied segments of the lithological column were found to be due to differences in lutite content, specific crystal habit and type of cement. Segments with specular gypsum were the strongest in the tests, while the segment with the highest amount of detrital materials was the most responsive to temperature and moisture changes. The treatments that produce greater alterations are those that contain only milli-RO water.  相似文献   

20.
Bioreactor landfills are designed to accelerate municipal solid waste biodegradation and stabilization; however, the uncaptured methane gas escapes to the atmosphere during their filling. This research investigates the implementation of a novel methane emission control technique that involves thin biocovers (TBC) placed as intermediate waste covers to oxidize methane without affecting the operation of bioreactor landfills. Batch incubation experiments were conducted for selecting the optimum TBC materials, capable of oxidizing methane to carbon dioxide by methanotrophic bacteria. Column experiments were performed to investigate the TBC performance under varying moisture content, compost-to-sawdust ratio, methane flow rate, and biocover thickness. Overall, the optimum TBC is comprised of a 30-cm thick bed of 0-10mass% sawdust mixed with compost, having a moisture content of 52% ww, which showed 100% CH4 oxidation efficiency over an extended period of time even at a relatively high methane inlet load of 9.4gm(-3)h(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号