首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.  相似文献   

2.
A previously developed pore network model is used here to study the spontaneous and forced secondary imbibition of a NAPL-invaded sediment, as in the displacement of NAPL by waterflooding a mixed-wet soil. We use a 3D disordered pore network with a realistic representation of pore geometry and connectivity, and a quasi-static displacement model that fully describes the pore-scale physics. After primary drainage (NAPL displacing water) up to a maximum capillary pressure, we simulate secondary imbibition (water displacing NAPL). We conduct a parametric study of imbibition by varying systematically the controlling parameters: the advancing contact angles, the fraction of NAPL-wet pores, the interfacial tension, and the initial water saturation. Once the secondary imbibition is completed, the controlling displacement mechanisms, capillary pressures, relative permeabilities, and trapped NAPL saturations are reported. It is assumed that NAPL migrates into an initially strongly water-wet sediment, i.e., the receding contact angles are very small. However, depending on the surface mineralogy and chemical compositions of the immiscible fluid phases, the wettability of pore interiors is altered while the neighborhoods of pore corners remain strongly water-wet-resulting in a mixed-wet sediment. Here, we compare three different levels of wettability alteration: water-wet (advancing contact angles (20 degrees to 55 degrees), intermediate-wet (55 degrees to 120 degrees), and NAPL-wet (120 degrees to 155 degrees). The range of advancing contact angles and the fraction of NAPL-wet pores have dramatic effects on the NAPL-water capillary pressures and relative permeabilities. The spatially inhomogeneous interfacial tension has a minor impact on the trapped NAPL saturation and relative permeability to NAPL, and a slight effect on the relative permeability to water. The initial water saturation has a slight effect on the two-phase flow characteristics of water-wet sediments; however, with more NAPL-wet pores in the sediment, it starts to have a profound effect on the water and NAPL relative permeabilities.  相似文献   

3.
This study develops a modeling approach for simulating and evaluating entrapped light nonaqueous-phase liquid (light NAPL-LNAPL) dissolution and transport of the solute in a fractured permeable aquifer (FPA). The term FPA refers to an aquifer made of porous blocks of high permeability that embed fractures. The fracture network is part of the domain characterized by high permeability and negligible storage. Previous studies show that sandstone aquifers often represent FPAs. The basic model developed in this study is a two-dimensional (2-D) model of permeable blocks that embed oblique equidistant fractures with constant aperture and orientation. According to this model, two major parameters govern NAPL dissolution and transport of the solute. These parameters are: 1) the dimensionless interphase mass transfer coefficient, K(f0), and 2) the mobility number, N(M0). These parameters represent measures of heterogeneity affecting flow, NAPL dissolution, and transport of the solute in the domain. The parameter K(f0) refers to the rate at which organic mass is transferred from the NAPL into the water phase. The parameter N(M0) represents the ratio of flow through the porous blocks to flow through the fracture network in regions free of entrapped NAPL. It also provides a measure of groundwater flow bypassing regions contaminated by entrapped NAPL. In regions contaminated by entrapped NAPL our simulations have often indicated very low permeability of the porous blocks, enabling a significant increase of the fracture flow at the expense of the permeable block flow. Two types of constitutive relationships also affect the rate of FPA cleanup: 1) the relationship between the saturation of the entrapped NAPL and the permeability of the porous blocks, and 2) the relationships representing effects of the entrapped NAPL saturation and the permeable block flow velocity on rates of interphase mass transfer. This study provides basic tools for evaluating the characteristics of pump-and-treat cleanup of FPAs by referring to sets of parameters and constitutive relationships typical of FPAs. The numerical simulations carried out in this study show that at high initial saturation of the entrapped NAPL, during initial stages of the FPA cleanup the contaminant concentration increases, but later it decreases. This phenomenon originates from significant groundwater bypassing the NAPL entrapped in the permeable blocks via the fracture network.  相似文献   

4.
A quantitative two-dimensional laboratory experiment was conducted to investigate the immiscible flow of a light non-aqueous phase liquid (LNAPL) in the vadose zone. An image analysis technique was used to determine the two-dimensional saturation distribution of LNAPL, water and air during LNAPL infiltration and redistribution. Vertical water saturation variations were also continuously monitored with miniature resistivity probes. LNAPL and water pressures were measured using hydrophobic and hydrophilic tensiometers. This study is limited to homogeneous geological conditions, but the unique experimental methods developed will be used to examine more complex systems. The pressure measurements and the quantification of the saturation distribution of all the fluids in the entire flow domain under transient conditions provide quantitative data essential for testing the predictive capability of numerical models. The data are used to examine the adequacy of the constitutive pressure-saturation relations that are used in multiphase flow models. The results indicate that refinement of these commonly used hydraulic relations is needed for accurate model prediction. It is noted in particular that, in three-fluid phase systems, models should account for the existence of a residual NAPL saturation occurring after NAPL drainage. This is of notable importance because residual NAPL can act as a non negligible persistent source of contamination.  相似文献   

5.
An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.  相似文献   

6.
The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL spill event decreased CT mass that reached the water table by 98% and had a significant impact on the formation of trapped NAPL. For all cases simulated, use of the new constitutive model that allows the formation of residual NAPL increased the amount of NAPL retained in the vadose zone. Density-driven advective gas flow from the ground surface controlled vapor migration in strongly anisotropic layers, causing NAPL mass flux to the lower layer to be reduced. These simulations indicate that consideration of the formation of residual and trapped NAPLs and dynamic boundary conditions (e.g., areas, rates, and periods of different NAPL and water discharge and fluctuations of atmospheric pressure) in the context of full three-phase flow are needed, especially for NAPL spill events at the ground surface. In addition, NAPL evaporation, density-driven gas advection, and NAPL vertical movement enhanced by water flow must be considered in order to predict NAPL distribution and migration in the vadose zone.  相似文献   

7.
Recent laboratory and field studies have shown that food-grade edible oils can be injected into the subsurface for installation of in-situ permeable reactive barriers. However to be effective, the oil must be distributed out away from the oil injection points without excessive permeability loss. In this work, we examine the distribution of soybean oil in representative aquifer sediments as non-aqueous phase liquid oil (NAPL oil) or as an oil-in-water emulsion. Laboratory columns packed with sands or clayey sands were flushed with either NAPL oil or a soybean emulsion followed by plain water, while monitoring permeability loss and the final oil residual saturation. NAPL oil can be injected into coarse-grained sands. However NAPL injection into finer grained sediments requires high injection pressures which may not be feasible at some sites. In addition, NAPL injection results in high oil residual saturations and moderate permeability losses. In contrast, properly prepared emulsions can be distributed through sands with varying clay content without excessive pressure buildup, low oil retention and very low to moderate permeability loss. For effective transport, the emulsion must be stable, the oil droplets must be significantly smaller than the mean pore size of the sediment and the oil droplets should have a low to moderate tendency to stick to each other and the aquifer sediments. In our work, oil retention and associated permeability loss increased with sediment clay content and with the ratio of droplet size to pore size. For sandy sediments, the permeability loss is modest (0-40% loss) and is proportional to the oil residual saturation.  相似文献   

8.
Hot water flushing for immiscible displacement of a viscous NAPL   总被引:2,自引:0,他引:2  
Thermal remediation techniques, such as hot water flooding, are emerging technologies that have been proposed for the removal of nonaqueous phase liquids (NAPLs) from the subsurface. In this study a combined laboratory and modeling investigation was conducted to determine if hot water flooding techniques would improve NAPL mass removal compared to ambient temperature water flushing. Two experiments were conducted in a bench scale two-dimensional sandbox (55 cmx45 cmx1.3 cm) and NAPL saturations were quantified using a light transmission apparatus. In these immiscible displacement experiments the aqueous phase, at 22 degrees C and 50 degrees C, displaced a zone with initial NAPL saturations on the order of 85%. The interfacial tension and viscosity of the selected light NAPL, Voltesso 35, are strongly temperature-dependent. Experimental results suggest that hot water flooding reduced the size of the high NAPL saturation zone, in comparison to the cold water flood, and yielded greater NAPL mass recovery (75% NAPL removal vs. 64%). Hot water flooding did not, however, result in lower residual NAPL saturations. A numerical simulator was modified to include simultaneous flow of water and organic phases, energy transport, temperature and pressure. Model predictions of mass removal and NAPL saturation profiles compared well with observed behavior. A sensitivity analysis indicates that the utility of hot water flooding improves with the increasing temperature dependence of NAPL hydraulic properties.  相似文献   

9.
The formation of residual, discontinuous nonaqueous phase liquids (NAPLs) in the vadose zone is a process that is not well understood. To obtain data that can be used to study the development of a residual NAPL saturation in the vadose zone and to test current corresponding models, detailed transient experiments were conducted in intermediate-scale columns and flow cell. The column experiments were conducted to determine residual carbon tetrachloride (CCl(4)) saturations of two sands and to evaluate the effect of CCl(4) vapors on the water distribution. In the intermediate-scale flow cell experiment, a rectangular zone of the fine-grained sand was packed in an otherwise medium-grained matrix. A limited amount of CCl(4) was injected from a small source and allowed to redistribute until a pseudo steady state situation had developed. A dual-energy gamma radiation system was used to determine fluid saturations at numerous locations. The experiments clearly demonstrated the formation of residual CCl(4) saturations in both sands. Simulations with an established multifluid flow simulator show the shortcomings of current relative permeability-saturation-capillary pressure (k-S-P) models. The results indicate that nonspreading behavior of NAPLs should be implemented in simulators to account for the formation of residual saturations.  相似文献   

10.
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe') for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe' suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution.  相似文献   

11.
The effectiveness of removal of nonaqueous phase liquids (NAPLs) from the entrapment source zone of the subsurface has been limited by soil heterogeneity and the inability to locate all entrapped sources. The goal of this study was to demonstrate the uncertainty of degree of source removal associated with aquifer heterogeneity. In this demonstration, source zone NAPL removal using surfactant-enhanced dissolution was considered. Model components that simulate the processes of natural dissolution in aqueous phase and surfactant-enhanced dissolution were incorporated into an existing code of contaminant transport. The dissolution modules of the simulator used previously developed Gilland-Sherwood type phenomenological models of NAPL dissolution to estimate mass transfer coefficients that are upscaleable to multidimensional flow conditions found at field sites. The model was used to simulate the mass removal from 10 NAPL entrapment zone configurations based on previously conducted two-dimensional tank experiments. These entrapment zones represent the NAPL distribution in spatially correlated random fields of aquifer hydraulic conductivity. The numerical simulations representing two-dimensional conditions show that effectiveness of mass removal depends on the aquifer heterogeneity that controls the NAPL entrapment and delivery of the surfactant to the locations of entrapped NAPLs. Flow bypassing resulting from heterogeneity and the reduction of relative permeability due to NAPL entrapment reduces the delivery efficiency of the surfactant, thus prolonging the remediation time to achieve desired end-point NAPL saturations and downstream dissolved concentrations. In some extreme cases, the injected surfactant completely bypassed the NAPL source zones. It was also found that mass depletion rates for different NAPL source configurations vary significantly. The study shows that heterogeneity result in uncertainties in the mass removal and achievable end-points that are directly related to dissolved contaminant plume development downstream of the NAPL entrapment zone.  相似文献   

12.
Macro-scale simulations often play an important role in the assessment and remediation of contamination by dense non-aqueous phase liquids (DNAPLs) in the subsurface. Effective parameters for the macro scale are required for these simulations in order to avoid a detailed discretisation of the geological structures. Starting from the observed influence of heterogeneities on multiphase flow processes at the macro scale, we present an upscaling procedure from the local to the macro scale for the derivation of constitutive relationships for multiphase flow processes. The approach is based on the assumption of an equilibrium of (capillary) forces, which allows the application of a percolation model. This results in saturation distributions for different capillary pressures. Averaging these distributions gives rise to a macroscopic capillary pressure-saturation relationship. For the saturation distribution, relative permeabilities and effective conductivities are computed depending on the structure and the flow direction. These are averaged with the help of the renormalisation method. The evolving relative permeability-saturation relationship for the macro scale shows a saturation-dependent anisotropy and pronounced residual saturations of the nonwetting phase (which were not assumed for the local scale). The anisotropy reflects the underlying structure of the considered system that needs not to be known in detail.  相似文献   

13.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confining layer for the underlying regional aquifer. Three suites of three tracers were injected into wells located 14, 24, and 24 m from a single, central extraction well. The tracers comprised noble gases (traditionally thought to be nonsorbing), alkanes (primarily water partitioning), perfluorides (primarily NAPL partitioning), and halons (both NAPL and water partitioning). Observations of vacuum response were consistent with flow in a fractured system. The halon tracers exhibited the greatest amount of retardation, and helium and the perfluoride tracers the least. The alkane tracers were unexpectedly more retarded than the perfluoride tracers, indicating low NAPL saturations and high water saturations. An NAPL saturation of 0.01, water saturation of 0.215, and gas saturation of 0.775 was estimated based on analysis of the suite of tracers comprising helium, perfluoromethylcyclohexane and dibromodifluoromethane, which was considered to be the most robust set. The estimated saturations compare reasonably well to independently determined values.  相似文献   

14.
A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149].  相似文献   

15.
Performance assessment of NAPL remediation in heterogeneous alluvium   总被引:1,自引:0,他引:1  
Over the last few years, more than 40 partitioning interwell tracer tests (PITTs) have been conducted at many different sites to measure nonaqueous phase liquid (NAPL) saturations in the subsurface. While the main goal of these PITTs was to estimate the NAPL volume in the subsurface, some were specifically conducted to assess the performance of remedial actions involving NAPL removal. In this paper, we present a quantitative approach to assess the performance of remedial actions to recover NAPL that can be used to assess any NAPL removal technology. It combines the use of PITTs (to estimate the NAPL volume in the swept pore volume between injection and extraction wells of a test area) with the use of several cores to determine the vertical NAPL distribution in the subsurface. We illustrate the effectiveness of such an approach by assessing the performance of a surfactant/foam flood conducted at Hill Air Force Base, UT, to remove a TCE-rich NAPL from alluvium with permeability contrasts as high as one order of magnitude. In addition, we compare the NAPL volumes determined by the PITTs with volumes estimated through geostatistical interpolation of aquifer sediment core data collected with a vertical frequency of 5-10 cm and a lateral borehole spacing of 0.15 m. We demonstrate the use of several innovations including the explicit estimation of not only the errors associated with NAPL volumes and saturations derived from PITTs but also the heterogeneity of the aquifer sediments based upon permeability estimates. Most importantly, we demonstrate the reliability of the  相似文献   

16.
Soil vapor extraction (SVE) is commonly used to remediate nonaqueous phase liquids (NAPLs) from the vadose zone. This paper aims to determine the effect of grain size heterogeneity on the removal of NAPL in porous media during SVE. Magnetic resonance imaging (MRI) was used to observe and quantify the amount and location of NAPL in flow-through columns filled with silica gel grains. MRI is unique because it is nondestructive, allowing three-dimensional images to be taken of the phases as a function of space and time. Columns were packed with silica gel in three ways: coarse grains (250-550 microm) only, fine grains (32-63 microm) only, and a core of fine grains surrounded by a shell of coarse grains. Columns saturated with water were drained under a constant suction head, contaminated with decane, and then drained to different decane saturations. Each column was then continuously purged with water-saturated nitrogen gas and images were taken intermittently. Results showed that at residual saturation, a sharp volatilization front moved through the columns filled with either coarse-grain or fine-grain silica gel. In the heterogeneous columns, the volatilization front in the core lagged just behind the shell because gas flow was greater through the shell and decane in the core diffused outward to the shell. When decane saturation in the core was above residual saturation, decane volatilization occurred near the inlet, the relative decane saturation throughout the core dropped uniformly, and decane in the core flowed in the liquid phase to the shell to replenish volatilized decane. These results indicate that NAPL trapped in low-permeability zones can flow to replenish areas where NAPL is lost due to SVE. However, when residual NAPL saturation is reached, NAPL flow no longer occurs and diffusion limits removal from low-permeability zones.  相似文献   

17.
18.
In preparation for a field experiment where a NAPL will be injected into a fractured sandstone aquifer, a 2D invasion percolation model of DNAPL migration in a single horizontal fracture with varying aperture has been developed. This simulation investigated the effect of spatially correlated fracture aperture fields on pressure-saturation relationships as a function of variable aperture mean, standard deviation, and spatial correlation statistics under hydrostatic conditions. Results from spatially correlated variable aperture fields can be significantly different from random fields. Longer ranges decreased entry pressures and higher standard deviations decreased nonwetting phase saturations. Mean aperture is the major control on displacement pressure, entry pressure and the form of the pressure-saturation curve. Simulation results using statistical parameters for a variable aperture natural sandstone fracture as described by Yeo et al. [International Journal of Rock Mechanics and Mining Sciences 35 (1998) 1051] closely resemble a Brooks-Corey pressure-saturation function, and exhibit a distinct entry pressure followed by a rapid increase in nonwetting phase saturation. Graphical estimates of entry pressure provide a good approximation of the critical aperture controlling the formation of a continuous nonwetting phase pathway in a variable aperture fracture. Consequently, we show that multiphase flow concepts developed for porous media can successfully be applied to variable aperture fractures. Entry pressure correlates well to the mean aperture in these simulations when using a Gaussian distribution of fracture aperture. Interpreted aperture distributions from NAPL injection experiments do not fit the true distribution well at low nonwetting phase saturations, but do at higher saturations above the entry pressure. Consequently, true, mechanical aperture variation within a fracture plane cannot be determined from NAPL injection experiments either in the field or laboratory.  相似文献   

19.
Numerical simulations are used for the systematic exploration of the migration and entrapment of dense nonaqueous phase liquids (DNAPLs) in heterogeneous formations. Ensembles of realizations of random, spatially correlated permeability fields are generated and employed in model simulations of a spill event. Statistical techniques are then used to quantify the sensitivity of model predictions to input parameters, thereby identifying the parameters or processes that may be of primary importance in the determination of organic liquid distributions in heterogeneous systems. Results of the study indicate that the most critical factors in modeling organic entrapment include the spill release rate, reliable estimates of the mean, variance, and vertical correlation scale of the formation permeability, and an accurate representation of the correlation between the capillary pressure–saturation function and the permeability. In contrast, the hydraulic gradient and cross-correlation of residual saturations with permeabilities are found to have only minor influence on organic liquid distributions in such heterogeneous formations.  相似文献   

20.
Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment yielded a radon retardation factor of 5.0, with a calculated TCE saturation of 6.5%. Numerical simulation breakthrough curves provided reasonably good matches to the approximate analytical solution breakthrough curves. However, non-equilibrium radon partitioning and heterogeneous TCE distributions may affect the retardation factors and TCE saturation estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号