首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
This study presents the first detailed data on aerosol concentrations of trace metals (Cd, Pb, Cu, Zn, Cr, Mn, Fe and Al) at the SE Mediterranean coast of Israel, and assesses their sources and fluxes. Aerosol samples were collected at two sampling stations (Tel-Shikmona and Maagan Michael) along the coast between 1994 and 1997. Two broad categories of aerosol trace metal sources were defined; anthropogenic (Cd, Cu, Pb and Zn) and naturally derived elements (Al, Fe, Mn and Cr). The extent of the anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the average crustal composition (EFcrust). High values (median >100) were calculated for Cd, Pb and Zn, minor values for Cu and relatively low values (<10) for Fe, Mn and Cr. The crustal-derived elements exhibited a statistically significant seasonal pattern of higher concentrations during spring and autumn (e.g. Al concentrations in some cases during these periods were observed to be in excess of 1500 ng m−3). In the eastern Mediterranean basin crustal-dominated elements are enriched by 2–3 times while others (Cd and Pb) are comparable to the northwestern Mediterranean. The Pb : Cd ratios of ∼150 are higher than in coastal European sites (60–116) or emission materials (∼50). It is speculated that these differences are attributed mainly to the mixing of crustal material with local and European emissions. At present, it is impossible to quantify the latter two fractions. Back trajectory analysis and the subsequent categorization of two main aerosol populations, ‘European’ and ‘North Africa–Arabian’, exhibited a significantly different geochemical imprint on the aerosol chemical composition. ‘European’-derived air masses indicated significantly higher EFcrust values for Cd and Pb due to the greater anthropogenic character of the aerosol population, with a dilution by crustal material of this population leading to comparatively lower EFcrust values associated with the North African–Arabian air masses.  相似文献   

2.
A sampling campaign of re-suspended road dust samples from 53 sites that could cover basically the entire Beijing, soil samples from the source regions of dust storm in August 2003, and aerosol samples from three representative sites in Beijing from December 2001 to September 2003, was carried out to investigate the characteristics of re-suspended road dust and its impact on the atmospheric environment. Ca, S, Cu, Zn, Ni, Pb, and Cd were far higher than its crustal abundances and Ca2+, SO42−, Cl, K+, Na+, NO3 were major ions in re-suspended road dust. Al, Ti, Sc, Co, and Mg in re-suspended road dust were mainly originated from crustal source, while Cu, Zn, Ni, and Pb were mainly derived from traffic emissions and coal burning, and Fe, Mn, and Cd were mainly from industrial emissions, coal combustion and oil burning. Ca2+ and SO42− mainly came from construction activities, construction materials and secondary gas-particle conversions, Cl and Na+ were derived from industrial wastewater disposal and chemical industrial emissions, and NO3 and K+ were from vehicle emissions, photochemical reactions of NOX, biomass and vegetable burning. The contribution of mineral aerosol from inside Beijing to the total mineral aerosols was ∼30% in spring of 2002, ∼70% in summer of 2002, ∼80% in autumn of 2003, ∼20% in PM10 and ∼50% in PM2.5, in winter of 2002. The pollution levels of the major pollution species, Ca, S, Cu, Zn, Ni, Pb, Fe, Mn, and Cd in re-suspended road dust reached ∼76%, ∼87%, ∼75%, ∼80%, ∼82%, ∼90%, ∼45%, ∼51%, and ∼94%, respectively. Re-suspended road dust from the traffic and construction activities was one of the major sources of pollution aerosols in Beijing.  相似文献   

3.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

4.
The rate constants for reactions of the SO4 radical anion with some low molecular weight monocarboxylic acids (MCAs) and dicarboxylic acids (DCAs) and their anions using the laser flash photolysis-long path laser absorption (LFP-LPLA) technique were determined. The present study contains the first measured rate constants for SO4 reactions with glycolic, lactic, malic and malonic acid. The rate constants are found to be in the range from 105 to 107 M−1 s−1, with the lower values found for acids and higher values for their respective anions. In addition, the rate constants for scavenging of SO4 by all investigated organics in the Mn(II)-catalyzed S(IV) autoxidation at pH 4.5 and T=25 °C were determined by means of the reversed rate method. The comparison between these rate constants and the rate constants obtained by direct measurements confirms the proposed inhibiting mechanism for the Mn(II)-catalyzed S(IV) autoxidation in the presence of monocarboxylic acids. In the case of formic acid, which causes the highest inhibition, this mechanism can explain the second part of kinetic traces (i.e. after the induction period). Surprisingly, although dicarboxylic acids are reactive toward SO4 they do not contribute to the inhibition of S(IV) oxidation (especially malic and malonic acids).  相似文献   

5.
重金属钝化剂可以改变土壤中重金属的形态,降低其在土壤中的有效浓度、植物毒性及生物有效性,影响污染土壤中植物的生长及其对重金属的吸收。在温室盆栽条件下研究了施加羟基磷灰石(HA)、纳米羟基磷灰石(nHA)、纳米零价铁(nFe0)和纳米TiO2nTiO2)对烟草植物修复铅镉污染土壤的作用。结果表明,HA降低土壤中Pb、Cd的有效性、促进烟草生长、增加了烟草叶、茎、根中Cd的吸收量和根系中Pb的吸收量,有利于Pb、Cd的钝化和植物修复。nHA也可以降低土壤中Pb、Cd的有效性,增加了烟草叶中Cd的吸收量,有利于Pb、Cd的钝化和Cd的植物提取。nFe0nTiO2对于土壤Pb和Cd的钝化作用和植物修复均没有显著影响。综合来看,HA最适合应用于烟草植物修复铅镉污染土壤。  相似文献   

6.
Potential source contribution function (PSCF) was employed to study the source receptor relationships for 14 chemical species (Mn, SO42−, Zn, Al, Fe, Cu, Cr, Ni, Cd, NO3, NH4+, K+, Mg2+,and Pb) found in precipitation collected at Lewes, Delaware. This study identified areas of the Eastern United States as possible emission source areas that could have contributed to the 14 element concentrations observed at Lewes. The identified regions in the Eastern United States generally coincide well with known emission source areas. The likely emission sources for these chemical species include oil- and coal-fired power plants, incinerators, motor vehicles, and iron and steel mills.  相似文献   

7.
Leccinum scabrum is an edible mushroom common in European regions in the northern hemisphere. Macro and trace mineral constituents such as Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn were studied in L. scabrum and in the top soil collected from the same location underneath soil substratum. The “pseudo-total” and labile (extractable fraction of minerals) were measured to get insight into the levels, distribution between the morphological parts of fruiting bodies, potential for their bioconcentration by mushroom and evaluated for human exposure via consumption of the mushroom. The sampling sites include the Dar?lubska Wilderness, Trójmiejski Landscape Park, Sobieszewo Island, Wdzydze Landscape Park and outskirts of the K?trzyn town in Mazury from the norther part of Poland. Median values of K, Rb and P concentrations in dehydrated L. scabrum were for caps in range 27,000–44,000 mg kg?1, 90–320 mg kg?1 and 6,200–9,100 mg kg?1, and followed by Mg at 880–1,000 mg kg?1, Ca at 48–210 mg kg?1 and Al at 15–120 mg kg?1. The median concentrations of Cu, Fe, Mn and Zn in caps were in range 15–27 mg kg?1 db 38–140 mg kg?1, 5.3–27 mg kg?1 and 130–270 mg kg?1. For Ba and Sr, concentrations on the average were at ~1 mg kg?1, and almost equally distributed between the caps and stipes of the fruiting bodies. L. scabrum mushrooms were low in toxic Ag, Cd, Hg and Pb, for which the median values in dried caps from five locations were, respectively, in range 0.48–0.98 mg kg?1 (cap to stipe index, QC/S, was 2.5–4.1), 1.0–5.8 mg kg?1 (QC/S 2.9–3.8), 0.36–0.59 mg kg?1 (QC/S 1.6–2.7) and 0.20–0.91 mg kg?1 (QC/S 1.2–1.9). Substantial variations in the concentrations of the “pseudo-total” fraction (extracted by aqua regia) or labile fraction (extracted by 20% solution of nitric acid) of the elements determined in forest topsoils were noted between some of the locations examined. The elements K, P, Cd, Cu, Hg, Mn, Na, Rb and Zn can be considered as those which were bioconcentrated by L. scabrum in fruiting bodies, while the rates of accumulation varied with the sampling location.  相似文献   

8.

Pennisetum sp. was employed as a model species to detect the growth and physiological response to cadmium (Cd) stress at different Cd concentrations (0, 20, 50, and 100 mg kg−1) in three types of soils (yellow brown soil, yellow soil, and red soil). Results showed that the growth of Pennisetum sp. was not significantly influenced by Cd in 20 mg kg−1, but significantly inhibited at higher Cd concentrations in three types of soils. Besides, the higher Cd concentrations, the lower root, stem, and leaf biomass. With Cd concentration of soil increasing, Cd content of root, stem, and leaf increased. Compared with no Cd, high Cd concentrations (50 and 100 mg kg−1) induced the physiological indices (photosynthetic rate, stomatal conductance, transpiration rate) and biochemical indices (nitrate reductase, glutamine synthetase, and glutamate synthase activities) decreasing, but the concentration of NO3 and NH4+ increasing. The activity of antioxidative enzymes (SOD, POD, and CAT) was disrupted and the content of malondialdehyde (MDA) increasing. Pennisetum sp. could protect cells from damage and maintain normal physiological metabolism via increasing the production of soluble sugar and soluble protein, but soluble proteins and soluble sugars were limited in high concentrations of Cd (50 and 100 mg kg−1). Moreover, the growth and physiological response to Cd are different in the three types of soils. The growth of Pennisetum sp. in yellow brown soil was better than that in other two soils, and the gas exchange rate, antioxidant enzyme activity, and nitrogen metabolism in yellow soil and red soil were more affected by Cd stress than that in yellow brown soil. Overall, Pennisetum sp. had certain tolerance and biosorption ability to Cd in different Cd concentrations and different types of soil. Hence, Pennisetum sp. was a suitable choice for Cd remediation, especially in yellow brown soil.

  相似文献   

9.
Surface sediments (0-5 cm) from 59 stations within the Yangtze River intertidal zone (YRIZ) were sampled for metal contamination analysis in April and August 2005. The concentrations ranged (in mg kg−1 dry weight): Al, 40,803-97,213; Fe, 20,538-49,627; Cd, 0.12-0.75; Cr, 36.9-173; Cu, 6.87-49.7; Mn, 413-1,112; Ni, 17.6-48.0; Pb, 18.3-44.1; and Zn, 47.6-154; respectively. Among the 59 sampling stations, enrichment factors (EF) indicate enrichment of Cd (52 stations), Cr (54 stations), Cu (5 stations), Ni (26 stations), Pb (5 stations) and Zn (5 stations). Geoaccumulation indexes (Igeo) also suggest individual metal contamination in localized areas. This study indicates that Cd, Cr and Ni enrichment in the YRIZ sediment is widespread whereas Cu, Mn, Pb and Zn enrichment is localized or nonexistent. Factor and cluster analyses indicate that Cd is associated with total organic carbon whereas Cu, Cr, Ni, Pb and Zn have a close association with Mn.  相似文献   

10.

Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg−1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  相似文献   

11.
In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment–water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m?2 day?1) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.  相似文献   

12.
Trifolium species, commonly known as clover species, have a cosmopolitan distribution and, as such, are used in many different traditional systems of medicine and consumed by many communities all over the world. In this study, the elemental distribution and nutritional value of five edible Trifolium species, namely, Trifolium africanum, Trifolium burchellianum, Trifolium repens, Trifolium dubium and Trifolium pratense were investigated to evaluate the potential of these plant species to alleviate malnutrition, thereby contributing toward the fight against food insecurity. Trifolium species were found to be a rich alternate source of essential nutrients with concentrations of elements being in decreasing order of Ca > Mg > Fe > Mn > Zn > Se > Cu > Cr > Pb > Ni > Co > Cd > As and with adequate levels of lipids (4.2 to 8.6%), proteins (35.1 to 45.4%) and carbohydrates (26.7 to 47.0%). Trifolium species were found to be rich in Se (contributing greater than 516% toward its RDA) with T. dubium having a concentration of 0.53 mg 10 g?1, dry mass, which is higher than Brazil nuts. T. pratense was found to be the most suitable species for human consumption due to it having low levels of toxic metals (As, Cd and Pb) while being rich in macro- and micro-elements, especially Fe (7.84 mg 10 g?1, dry mass) and Se (0.36 mg 10 g?1, dry mass).  相似文献   

13.
An advanced algorithm called positive matrix factorization (PMF) in receptor modeling was used to identify the sources of respirable suspended particulates (RSP) in Hong Kong. The compositional data obtained from the Hong Kong Environmental Protection Department from 1992 to 1994 were analyzed. The species analyzed in this study are Al, Ca, Mg, Pb, Na+, V, Cl, NH4+, SO42−, Br, Mn, Fe, Ni, Zn, Cd, K+, Ba, Cu, and As. Unlike the conventional receptor modeling algorithm, factor analysis PMF only generates non-negative source profiles. To eliminate sulfate from such factors where it is not physically plausible, special penalty terms were included in the model so that sulfate concentrations could be selectively decreased in specified factors. A 9-factor model containing non-zero sulfate concentrations in three factors gives the most satisfactory source profiles. Ammonium sulfate, chloride depleted marine aerosols and crustal aerosols are the three non-zero sulfate sources. Other factors are marine aerosols, non-ferrous smelters, particulate copper, fuel oil burning, vehicular emission and bromide/road dust. The last two sources can be combined as a single source of vehicle/road dust. The compositional profiles of these factors were also developed. The mass profiles obtained can be improved by further refinement of distribution of sulfate in the sources.  相似文献   

14.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

15.

This study investigated the characteristics of iron corrosion scales in pipes at tube well, overhead tank, and consumers’ end in older untreated water distribution system in Peshawar city, Pakistan. Effect of water quality conditions on corrosion scales and that of scales on drinking water quality in such systems was also assessed by undertaking a comparison with new piped distribution systems. The scales were analyzed for chemical composition and morphology using X-ray diffraction (XRD), inductively coupled plasma (ICP), and a scanning electron microscope (SEM), while water quality was examined for physicochemical and biological characteristics. The main crystalline phases of corrosion scales were goethite, magnetite, siderite, and quartz. From tube well to consumers’ end, goethite increased from 36 up to 48%, quartz declined from 22 to 15%, while magnetite fluctuated and siderite disappeared. Elemental composition of scales showed the deposition of Zn, Al, Mn, Cr, Pb, Cu, As, and Cd with Zn (13.9 g/kg) and Al (3.6 g/kg) in highest proportion. The SEM analysis illustrated the presence of microbial communities indicating the formation of biofilms in the corrosion scales. The significant difference (P <?0.05) in levels of dissolved oxygen (DO), Cl?, SiO44?, electrical conductivity (EC), SO42?, NO3?, alkalinity, hardness, and trace metals between old (DS-O) and new piped systems indicated their role in corrosion scale formation/destabilization and the effect of scale dissolution on water quality. In DS-O, EC, Cu, and Mn were significantly higher (P?<?0.05), whereas turbidity, EC, DO, and SiO44? significantly increased from source to consumers’ end implying a higher dissolution of scales and lowered corrosion rates in DS-O to utilize SiO44? and DO for iron oxidation.

  相似文献   

16.
Association of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements with cytosolic proteins of different molecular masses was described for the liver of European chub (Squalius cephalus) from weakly contaminated Sutla River in Croatia. The principal aim was to establish basic trace element distributions among protein fractions characteristic for the fish living in the conditions of low metal exposure in the water. The fractionation of chub hepatic cytosols was carried out by size exclusion high performance liquid chromatography (SE-HPLC; Superdex? 200 10/300 GL column), and measurements were performed by high resolution inductively coupled plasma mass spectrometry (HR ICP-MS). Elution profiles of essential elements were mostly characterized by broad peaks covering wide range of molecular masses, as a sign of incorporation of essential elements in various proteins within hepatic cytosol. Exceptions were Cu and Fe, with elution profiles characterized by sharp, narrow peaks indicating their probable association with specific proteins, metallothionein (MT), and ferritin, respectively. The main feature of the elution profile of nonessential metal Cd was also single sharp, narrow peak, coinciding with MT elution time, and indicating almost complete Cd detoxification by MT under the conditions of weak metal exposure in the water (dissolved Cd concentration ≤0.3 μg L?1). Contrary, nonessential metal Pb was observed to bind to wide spectrum of proteins, mostly of medium molecular masses (30–100 kDa), after exposure to dissolved Pb concentration of ~1 μg L?1. The obtained information within this study presents the starting point for identification and characterization of specific metal/metalloid-binding proteins in chub hepatic cytosol, which could be further used as markers of metal/metalloid exposure or effect on fish.  相似文献   

17.
Al, V, Mn, Fe, Cu, As, Cd, Ba, Pb, Bi and U were determined in a continuous series of 46 snow samples from a 2.3-m snow pit, covering the time period from austral spring 1998 to summer 2002, at a site on the east side of the Lambert Glacier basin in East Antarctica. Concentrations are very low for all metals and differ by orders of magnitude from one metal to another, with the mean concentrations ranging from 0.028 pg g−1 for Bi to 165 pg g−1 for Al. It is estimated that anthropogenic contributions are dominant for Cu, Pb and probably As, in the snow in our study area while the natural contributions from rock and soil dust, sea-salt spray and volcanic emissions account for most of the measured concentrations of the other metals. Our snow profiles show pronounced seasonal variations for Mn, As, Ba, Pb and Bi throughout the year, but a very different situation is observed between different metals. These observations suggest that heavy metals determined in our samples are controlled by different transport and deposition mechanisms related to physical and chemical alterations in the properties and sources of aerosol.  相似文献   

18.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   

19.
Size-resolved, 24-h aerosol samples were collected from June–July 2001 by means of an Andersen high-volume cascade impactor. Sampling was conducted in a central avenue (Patission) characterised by heavy traffic, 21 m above street level, in the Athens city centre. Samples were analysed by atomic absorption spectrometry and gas chromatography to determine the size distribution of nine metallic elements (Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) and n-alkanes (with carbon numbers in the range 18–35). The aerosol mass median diameter (MMD) was calculated by means of probit analysis on the cumulative mass concentration size distribution for each metals and n-alkane. The total n-alkane mass concentration (TNA) in total suspended particles (TSP) ranged from 72 to 1506 ng m−3 while the total metal concentration ranged from 5.6 to 28.6 μg m−3. The results showed that metals such as Cd, V and Ni are characterised by a MMD <1 μm, while the MMD for Pb and Mn are ∼1 μm. Such metals are generally considered to have anthropogenic emission sources. Other metals such as Al, Fe, Cu and Cr were found to have MMD=2–6 μm, which generally originate from soil dust or mechanical abrasion processes. The Carbon number profile of n-alkane compounds showed a strong anthropogenic source with only a minor biogenic influence. The concentration of most n-alkanes was characterised by high variability during the sampling period, in contrast to the concentration of most trace metals. Most n-alkanes had a unimodal size distribution with MMD=1–2 μm similar to those of some trace metals (Pb, Mn), which originate mostly from vehicle emissions. This is a strong indication that these species have a common source. Finally, gas–particle partitioning of n-alkanes was also examined for different particle sizes by means of the relationship between the partition constant Kp and saturation vapour pressure (pL0) as proposed by current sorption models.  相似文献   

20.
Cloud water investigations have been performed at the highest elevation of Central Germany in 1997. Results of extensive trace element measurements are presented. Besides conductivity, pH, liquid water content and major ions the data set includes 49 minor and trace elements. Estimation of crustal enrichment factors (EFs) provides an indication of the anthropogenic contributions to the cloud water concentrations. The variation of cloud composition with time has been illustrated for two selected events with different air mass origins. The chemical composition of the cloud condensation nuclei on which the droplets grow mainly determines the cloud water chemistry. For a cloud event in June 1997 the concentrations of the crustally derived elements Si, Al, Fe, Ti, Ce, La and Nd follow each other closely. The fact that SO42−, NO3 and NH4+ are only moderately correlated with the particular pollutants with high enrichment factors such as Cd, Sb, Pb, Zn, Cu, As, Bi, Sn, Mo, Ni, Tl and V indicates that their source regions are more widespread. During an event in October 1997 the time trends for most minor and trace elements follow rather closely those for the major ions NH4+, SO42− and NO3. Back trajectories show that the transport from continental and marine European sources was the likely cause of the sample concentrations. EFs of trace elements in cloud water samples during the June and October event show a strong correlation with those obtained for urban particulate matter. Although both events are influenced by air masses of different origin, there is a good agreement between the EF signatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号