首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A composite approach mixing design-based and model-based inference is considered for analyzing line-transect or point-transect data. In this setting, the properties of the animal abundance estimator stem from the sampling scheme adopted to locate transects or points on the study region, as well as from the modeled detection probabilities. Moreover, the abundance estimation can be viewed as a “generalized” version of Monte Carlo integration. This approach permits to prove the superiority of the stratified placement of transects or points (based on a regular tessellation of the study region) over the uniform random placement. Even if the result was already established for the fixed-area sampling, i.e., when a perfect detection takes place, it was lacking in distance sampling. Comparisons with other widely-applied schemes pursuing an even placement of transects or points are also considered.  相似文献   

2.
An estimating function approach to the inference of catch-effort models   总被引:1,自引:0,他引:1  
A class of catch-effort models, which allows for heterogeneous removal probabilities, is proposed for closed populations. The model includes three types of removal probabilities: multiplicative, Poisson and logistic. The usual removal and generalized removal models then become special cases. The equivalence of the proposed model and a special type of capture-recapture model is discussed. A unified estimating function approach is used to estimate the initial population size. For the homogeneous model, the resulting population size estimator based on optimal estimating functions is asymptotically equivalent to the maximum likelihood estimator. One advantage for our approach is that it can be extended to handle the heterogeneous populations in which the maximum likelihood estimators do not exist. The bootstrap method is applied to construct variance estimators and confidence intervals. We illustrate the method by two real data examples. Results of a simulation study investigating the performance of the proposed estimation procedure are presented.  相似文献   

3.
This paper compares the procedures based on the extended quasi-likelihood, pseudo-likelihood and quasi-likelihood approaches for testing homogeneity of several proportions for over-dispersed binomial data. The type I error of the Wald tests using the model-based and robust variance estimates, the score test, and the extended quasi-likelihood ratio test (deviance reduction test) were examined by simulation. The extended quasi-likelihood method performs less well when mean responses are close to 1 or 0. The model-based Wald test based on the quasi-likelihood performs the best in maintaining the nominal level. The score test performs less well when the intracluster correlations are large or heterogeneous. In summary: (i) both the quasilikelihood and pseudo-likelihood methods appear to be acceptable but care must be taken when overfitting a variance function with small sample sizes; (ii) the extended quasi-likelihood approach is the least favourable method because its nominal level is much too high; and (iii) the robust variance estimator performs poorly, particularly when the sample size is small.  相似文献   

4.
Adaptive two-stage one-per-stratum sampling   总被引:1,自引:0,他引:1  
We briefly describe adaptive cluster sampling designs in which the initial sample is taken according to a Markov chain one-per-stratum design (Breidt, 1995) and one or more secondary samples are taken within strata if units in the initial sample satisfy a given condition C. An empirical study of the behavior of the estimation procedure is conducted for three small artificial populations for which adaptive sampling is appropriate. The specific sampling strategy used in the empirical study was a single random-start systematic sample with predefined systematic samples within strata when the initially sampled unit in that stratum satisfies C. The bias of the Horvitz-Thompson estimator for this design is usually very small when adaptive sampling is conducted in a population for which it is suited. In addition, we compare the behavior of several alternative estimators of the standard error of the Horvitz-Thompson estimator of the population total. The best estimator of the standard error is population-dependent but it is not unreasonable to use the Horvitz-Thompson estimator of the variance. Unfortunately, the distribution of the estimator is highly skewed hence the usual approach of constructing confidence intervals assuming normality cannot be used here.  相似文献   

5.
Practical considerations often motivate employing variable probability sampling designs when estimating characteristics of forest populations. Three distribution function estimators, the Horvitz-Thompson estimator, a difference estimator, and a ratio estimator, are compared following variable probability sampling in which the inclusion probabilities are proportional to an auxiliary variable, X. Relative performance of the estimators is affected by several factors, including the distribution of the inclusion probabilities, the correlation () between X and the response Y, and the position along the distribution function being estimated. Both the ratio and difference estimators are superior to the Horvitz-Thompson estimator. The difference estimator gains better precision than the ratio estimator toward the upper portion of the distribution function, but the ratio estimator is superior toward the lower end of the distribution function. The point along the distribution function at which the difference estimator becomes more precise than the ratio estimator depends on the sampling design, as well as the coefficient of variation of X and . A simple confidence interval procedure provides close to nominal coverage for intervals constructed from both the difference and ratio estimators, with the exception that coverage may be poor for the lower tail of the distribution function when using the ratio estimator.  相似文献   

6.
Many organisms have been reported to have movement patterns that are well approximated as Lévy walks. This is typically because distributions of straight line distances between consecutive significant turns in movement paths have heavy power law tails. This diagnostic tool has been called into question because there is currently no standard, unambiguous way to identify significant turns. Even if such a way could be found, statistical analyses based on significant turns cannot account for actual movements made between turns and as a consequence cannot distinguish between true Lévy walks and other fractal random walks such as Lévy modulated correlated random walks where organisms randomly meander rather than move in straight lines between consecutive reorientation events. Here, I show that structure functions (i.e. moments of net displacements made across fixed time intervals) can distinguish between different kinds of Lévy walks and between Lévy walks and random walks with a few scales such as composite correlated random walks and correlated random walks. Distinguishing between these processes will lead to a better understanding of how and why animals perform Lévy walks and help bridge the apparent divide between correlated random walks and Lévy walks. Structure functions do not require turn identification and instead take account of entire movement paths. Using this diagnostic tool, I bolster previous claims that honeybees use a movement strategy that can be approximated by Lévy walks when searching for their hive. I also show how structure functions can be used to establish the extent of self-similar behaviour in meandering Lévy walks.  相似文献   

7.
In this paper, we consider design-based estimation using ranked set sampling (RSS) in finite populations. We first derive the first and second-order inclusion probabilities for an RSS design and present two Horvitz–Thompson type estimators using these inclusion probabilities. We also develop an alternate Hansen–Hurwitz type estimator and investigate its properties. In particular, we show that this alternate estimator always outperforms the usual Hansen–Hurwitz type estimator in the simple random sampling with replacement design with comparable sample size. We also develop formulae for ratio estimator for all three developed estimators. The theoretical results are augmented by numerical and simulation studies as well as a case study using a well known data set. These show that RSS design can yield a substantial improvement in efficiency over the usual simple random sampling design in finite populations.  相似文献   

8.
Closed capture-recapture (CR) estimators have been used extensively to estimate population size. Most closed CR approaches have been developed and evaluated for discrete-time models, but there has been little effort to evaluate their continuous-time counterparts. Continuous-time estimators — developed using maximum likelihood theory by Craig (1953) and Darroch (1958), and martingale theory by Becker (1984) — that allow capture probabilities to vary over time were evaluated using Monte Carlo simulation. Overall, the ML estimators had a smaller MSE. The estimators performed well when model assumptions were upheld, and were somewhat robust to heterogeneity in capture probabilities. However, the estimators were not robust to behavioural effects in the capture probabilities. Time lag effects (periods when animals might be unavailable for immediate recapture) on continuous-time estimates were also investigated and results indicated a positive bias which was greater for smaller populations. There was no gain in performance when using a continuous-time estimator versus a discrete-time estimator on the same simulated data. Usefulness of the continuous-time approach may be limited to study designs where animals are easier to sample using continuous-time methodology.  相似文献   

9.
Shen TJ  He F 《Ecology》2008,89(7):2052-2060
Most richness estimators currently in use are derived from models that consider sampling with replacement or from the assumption of infinite populations. Neither of the assumptions is suitable for sampling sessile organisms such as plants where quadrats are often sampled without replacement and the area of study is always limited. In this paper, we propose an incidence-based parametric richness estimator that considers quadrat sampling without replacement in a fixed area. The estimator is derived from a zero-truncated binomial distribution for the number of quadrats containing a given species (e.g., species i) and a modified beta distribution for the probability of presence-absence of a species in a quadrat. The maximum likelihood estimate of richness is explicitly given and can be easily solved. The variance of the estimate is also obtained. The performance of the estimator is tested against nine other existing incidence-based estimators using two tree data sets where the true numbers of species are known. Results show that the new estimator is insensitive to sample size and outperforms the other methods as judged by the root mean squared errors. The superiority of the new method is particularly noticeable when large quadrat size is used, suggesting that a few large quadrats are preferred over many small ones when sampling diversity.  相似文献   

10.
Abstract: Determining population viability of rare insects depends on precise, unbiased estimates of population size and other demographic parameters. We used data on the endangered St. Francis' satyr butterfly (Neonympha mitchellii francisci) to evaluate 2 approaches (mark–recapture and transect counts) for population analysis of rare butterflies. Mark–recapture analysis provided by far the greatest amount of demographic information, including estimates (and standard errors) of population size, detection, survival, and recruitment probabilities. Mark–recapture analysis can also be used to estimate dispersal and temporal variation in rates, although we did not do this here. Models of seasonal flight phenologies derived from transect counts (Insect Count Analyzer) provided an index of population size and estimates of survival and statistical uncertainty. Pollard–Yates population indices derived from transect counts did not provide estimates of demographic parameters. This index may be highly biased if detection and survival probabilities vary spatially and temporally. In terms of statistical performance, mark–recapture and Pollard–Yates indices were least variable. Mark–recapture estimates were less likely to fail than Insect Count Analyzer, but mark–recapture estimates became less precise as sampling intensity decreased. In general, count‐based approaches are less costly and less likely to cause harm to rare insects than mark–recapture. The optimal monitoring approach must reconcile these trade‐offs. Thus, mark–recapture should be favored when demographic estimates are needed, when financial resources enable frequent sampling, and when marking does not harm the insect populations. The optimal sampling strategy may use 2 sampling methods together in 1 overall sampling plan: limited mark–recapture sampling to estimate survival and detection probabilities and frequent but less expensive transect counts.  相似文献   

11.
We propose a new approach to the multivariate analysis of data sets with known sampling site spatial positions. A between-sites neighbouring relationship must be derived from site positions and this relationship is introduced into the multivariate analyses through neighbouring weights (number of neighbours at each site) and through the matrix of the neighbouring graph. Eigenvector analysis methods (e.g. principal component analysis, correspondence analysis) can then be used to detect total, local and global structures. The introduction of the D-centring (centring with respect to the neighbouring weights) allows us to write a total variance decomposition into local and global components, and to propose a unified view of several methods. After a brief review of the matrix approach to this problem, we present the results obtained on both simulated and real data sets, showing how spatial structure can be detected and analysed. Freely available computer programs to perform computations and graphical displays are proposed.  相似文献   

12.
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.  相似文献   

13.
Reynolds AM 《Ecology》2012,93(5):1228-1233
Lévy walks are a widely used but contentious model of animal movement patterns. They are contentious because they have been wrongly ascribed to some animal species through use of incorrect statistical methods and because they have not been adequately compared against strong alternative models, such as composite correlated random walks. This lack of comparison has been partly because the strong alternative models do not have simple likelihood functions. Here I show that power-spectra and the distribution of the first significant digits (the leading non-zero digits) of the step lengths can distinguish between Lévy walks and composite correlated random walks. Using these diagnostic tools, I bolster previous claims that honey bees use a movement strategy that can be approximated by Lévy walks when searching for their hive or for a food source.  相似文献   

14.
A new species abundance estimator is proposed when point-to-plant sampling is adopted in a design-based framework. The method is based on the relationship between each species abundance and the probability density function of the relative squared point-to-plant distance. Using this result, a kernel estimator for species abundance is provided and the nearest neighbor method is suggested for bandwidth selection. The proposed estimator requires no assumptions about the species point patterns nor corrections for sampling near the edges of the study region. Moreover, the estimator shows suitable statistical properties as well as good practical performance as is shown in a simulation study.  相似文献   

15.
Adaptive two-stage sequential sampling (ATSSS) design was developed to observe more rare units and gain higher efficiency, in the sense of having a smaller variance estimator, than conventional sampling designs with equal effort for rare and spatially cluster populations. For certain rare populations, incorporating auxiliary variables into a sampling design can further improve the observation of rare units and increase efficiency. In this article, we develop regression-type estimators for ATSSS so that auxiliary variables can be incorporated into the ATSSS design when warranted. Simulation studies on two populations show that the regression-type estimators can significantly increase the efficiency of ATSSS and the detection of more rare units as compared to conventional sampling counterparts. Simulation of sampling of desert shrubs in Inner Mongolia (one of the two populations studied) showed that by incorporating a GIS auxiliary variable into ATSSS with the regression estimators resulted in a gain in efficiency over ATSSS without the auxiliary variable. Further, we found that the use of the GIS auxiliary variable in a conventional two-stage design with a regression estimator did not show a gain in efficiency.  相似文献   

16.
Genetic correlations between behaviors underlying a behavioral syndrome may constrain the capacity of a population to respond to selection on these behaviors. Average autonomy quantifies the extent in which estimated genetic (co)variances constrain the rate of evolutionary change of behavioral traits forming a syndrome when these traits are under selections in all possible directions of multivariate trait-space. However, it is not clear whether a calculated average autonomy value of an observed syndrome constitutes a significant evolutionary constraint or not. I here outline an approach for testing evolutionary constraint in a syndrome, which is based on comparing the observed genetic (co)variance structure to the one where the genetic covariances are assumed to be zero and taking onboard the uncertainty in the (co)variances between behaviors into the calculations of average autonomy. The approach can be implemented in the context of parametric bootstrap or Bayesian statistics, and I provide a worked example of the latter. I further highlight that when genetic (co)variances are unattainable, the between-individual (co)variances act as an interesting proxy, which is within reach for many behavioral studies. I provide R code for all calculations.  相似文献   

17.
There has been a great deal of recent discussion of the practice of regression analysis (or more generally, linear modelling) in behaviour and ecology. In this paper, I wish to highlight two factors that have been under-considered, collinearity and measurement error in predictors, as well as to consider what happens when both exist at the same time. I examine what the consequences are for conventional regression analysis (ordinary least squares, OLS) as well as model averaging methods, typified by information theoretic approaches based around Akaike’s information criterion. Collinearity causes variance inflation of estimated slopes in OLS analysis, as is well known. In the presence of collinearity, model averaging reduces this variance for predictors with weak effects, but also can lead to parameter bias. When collinearity is strong or when all predictors have strong effects, model averaging relies heavily on the full model including all predictors and hence the results from this and OLS are essentially the same. I highlight that it is not safe to simply eliminate collinear variables without due consideration of their likely independent effects as this can lead to biases. Measurement error is also considered and I show that when collinearity exists, this can lead to extreme biases when predictors are collinear, have strong effects but differ in their degree of measurement error. I highlight techniques for dealing with and diagnosing these problems. These results reinforce that automated model selection techniques should not be relied on in the analysis of complex multivariable datasets.  相似文献   

18.
The estimation of population density animal population parameters, such as capture probability, population size, or population density, is an important issue in many ecological applications. Capture–recapture data may be considered as repeated observations that are often correlated over time. If these correlations are not taken into account then parameter estimates may be biased, possibly producing misleading results. We propose a generalized estimating equations (GEE) approach to account for correlation over time instead of assuming independence as in the traditional closed population capture–recapture studies. We also account for heterogeneity among observed individuals and over-dispersion, modelling capture probabilities as a function of covariates. The GEE versions of all closed population capture–recapture models and their corresponding estimating equations are proposed. We evaluate the effect of accounting for correlation structures on capture–recapture model selection based on the quasi-likelihood information criterion (QIC). An example is used for an illustrative application and for comparison to currently used methodology. A Horvitz–Thompson-like estimator is used to obtain estimates of population size based on conditional arguments. A simulation study is conducted to evaluate the performance of the GEE approach in capture-recapture studies. The GEE approach performs well for estimating population parameters, particularly when capture probabilities are high. The simulation results also reveal that estimated population size varies on the nature of the existing correlation among capture occasions.  相似文献   

19.
The implementation of an adaptive cluster sampling design often becomes logistically challenging because variation in the final sampling effort introduces uncertainty in survey planning. To overcome this drawback, an inexpensive and easy to measure auxiliary variable could be used in a two-phase survey strategy, called adaptive cluster double sampling (Félix-Medina and Thompson in Biometrika 91:877–891, 2004). In this paper, a two-phase sampling strategy is proposed which combines the idea of adaptive cluster double sampling with the principle of post-stratification. In the first-phase an adaptive cluster sample is selected by means of an inexpensive auxiliary variable. Networks from the first phase sampling are then post-stratified according to their size. In the second-phase, the network structure is used to select a subsample of units by means of stratified random sampling. The proposed sampling strategy employs stratification without requiring an a priori delineation of the strata. Indeed, the strata sizes are estimated in the course of the two-phase sampling process. Therefore, it is suitable for situations where stratification is suspected to be efficient but strata cannot be easily delineated in advance. In this framework, a new type of estimator for the population mean which mimics the stratified sampling mean estimator and an estimator of the sampling variance are proposed. The results of a simulation study confirm, as expected, that the use of post-stratification leads to gain in precision for the estimator. The proposed sampling strategy is applied for targeting an epiphytic lichen community Lobarion pulmonariae in a forest area of the Northern Apennines (N-Italy), characterized by several species of conservation concern.  相似文献   

20.
Wildlife sampling for habitat selection often combines a random background sample with a random sample of used sites, because the background sample could contain too few used sites to be informative for rare species. This approach is referred to as use-availability sampling. Two variants are considered where there is: (1) a random background sample including used and unused sites augmented with a sample of used sites, and (2) a sample of used sites augmented with a contaminated background sample, i.e. use is not recorded. A weighted estimator first proposed by Manski and Lerman (Econometrica 45(8):1977?C1988, 1977) forms the basis for our suggested approach. The weighted estimator has been shown to perform better than the usual unweighted approach with uncontaminated data and mis-specified logit models (Xie and Manski in Sociol Methods Res 17(3):283?C302, 1989). A weighted EM algorithm is developed for use with contaminated background data. We show that the weighted estimator continues to perform well with contaminated data and maintains its robustness to model mis-specification. The weighted estimator has not been previously used for use-availability sampling due to reliance on the assumption that only the intercept is biased, which is valid for a correct logit model. We show that adjusting the intercept may not eliminate the bias with an incorrect logit model. In this case, the weighted estimator is a relatively simple and effective alternative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号