首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Chronic wasting disease (CWD), a contagious prion disease of the deer family, has the potential to severely harm deer populations and disrupt ecosystems where deer occur in abundance. Consequently, understanding the dynamics of this emerging infectious disease, and particularly the dynamics of its transmission, has emerged as an important challenge for contemporary ecologists and wildlife managers. Although CWD is contagious among deer, the relative importance of pathways for its transmission remains unclear. We developed seven competing models, and then used data from two CWD outbreaks in captive mule deer and model selection to compare them. We found that models portraying indirect transmission through the environment had 3.8 times more support in the data than models representing transmission by direct contact between infected and susceptible deer. Model-averaged estimates of the basic reproductive number (R0) were 1.3 or greater, indicating likely local persistence of CWD in natural populations under conditions resembling those we studied. Our findings demonstrate the apparent importance of indirect, environmental transmission in CWD and the challenges this presents for controlling the disease.  相似文献   

2.
《Ecological modelling》1999,114(2-3):287-304
Management of German roe deer (Capreolus capreolus) populations is a challenge for wildlife managers and foresters because population densities are difficult to estimate in forests and forest regeneration can be negatively affected when roe deer density is high. We describe a model to determine deer population densities compatible with forest management goals, and to assess harvest rates necessary to maintain desired deer densities. A geographic information system (GIS) was used to model wildlife habitat and population dynamics over time. Our model interactively incorporates knowledge of field biologists and foresters via a graphical user interface (GUI). Calibration of the model with deer damage maps allowed us to evaluate density dependence of a roe deer population. Incorporation of local knowledge into temporally dynamic and spatial models increases understanding of population dynamics and improves wildlife management.  相似文献   

3.
Managing wildlife diseases requires an understanding of disease transmission, which may be strongly affected by host population density and landscape features. Transmission models are typically fit from time-series disease prevalence data and modelled based on how the contact rate among hosts is affected by density, which is often assumed to be a linear (density-dependent transmission) or constant (frequency-dependent transmission) relationship. However, long-term time-series data is unavailable for emerging diseases, and this approach cannot account for independent effects of landscape. We developed a mechanistic model based on ecological data to empirically derive the contact rate-density relationship in white-tailed and mule deer in an enzootic region of chronic wasting disease (CWD) in Alberta, Canada and to determine whether it was affected by landscape. Using data collected from aerial surveys and GPS-telemetry, we developed empirical relationships predicting deer group size, home range size, and habitat selection to iteratively simulate deer distributions across a range of densities and landscapes. We calculated a relative measure of total per-capita contact rate, which is proportional to the number of other deer contacted per individual per unit time, for each distribution as the sum of pairwise contact rates between a target deer and all other individuals. Each pairwise contact rate was estimated from an empirical relationship developed from GPS-telemetry data predicting pairwise contact rates as a function of home range overlap and landscape structure. Total per-capita contact rates increased as a saturating function of density, supporting a transmission model intermediate between density- and frequency-dependent transmission. This pattern resulted from group sizes that reached an asymptote with increasing deer density, although this relationship was mediated by tree and shrub coverage in the landscape, such that in heavily wooded areas, the contact rate saturated at much lower densities. These results suggest that CWD management based on herd reductions, which require a density-dependent contact rate to be effective, may have variable effects on disease across a single management region. The novel mechanistic approach we employed for estimating effects of density and landscape on transmission is a powerful complement to typical data-fitting approaches for modelling disease transmission.  相似文献   

4.
Abstract:  Recent outbreaks of rabies and canine distemper in wildlife populations of the Serengeti show that infectious disease constitutes a significant cause of mortality that can result in regional extirpation of endangered species even within large, well-protected areas. Nevertheless, effective management of an infectious disease depends critically on understanding the epidemiological dynamics of the causative pathogen. Pathogens with short infection cycles cannot persist in small populations in the absence of a more permanent reservoir of infection. Development of appropriate interventions requires detailed data on transmission pathways between reservoirs and wildlife populations of conservation concern. Relevant data can be derived from long-term population monitoring, epidemic and case-surveillance patterns, genetic analyses of rapidly evolving pathogens, serological surveys, and intervention studies. We examined studies of carnivore diseases in the Serengeti. Epidemiological research contributes to wildlife conservation policy in terms of management of endangered populations and the integration of wildlife conservation with public health interventions. Long-term, integrative, cross-species research is essential for formulation of effective policy for disease control and optimization of ecosystem health.  相似文献   

5.
Laboratory cultures of offspring from single families and a mass mating ofMytilus edulis were reared to the spat stage at different temperatures. Some cultures were reared further to the juvenile stage at the same, or at an altered temperature. Using electrophoresis, frequencies of genotypes at theOdh, Pgm, Gpi, Hex, EsD, Pgk andDia loci were recorded at the spat stage and, again, where possible, in juveniles. Significant deviations from expected genotype frequencies were observed at most loci in at least some cultures, but in no cases were these deviations related to the temperature at which the cultures had been reared. We speculate that these differences may have been due to variations in the density of mussel spat in the cultures. Very extensive and consistentPgm genotype-specific mortalities were evident in one family, and, in another family, consistent deviations were seen at theHex locus. Weaker, but nevertheless significant, deviations from expected genotype frequencies occurred at most other loci and it is concluded that, in most cases, the loci were acting as markers for a locus, or loci, on the same chromosome which had a strong effect on fitness. It is thought unlikely that evidence for similar levels of selection would be found in natural populations because, in wild populations, particular marker-locus genotypes would be associated with a range of genetic backgrounds rather than a single chromosome.  相似文献   

6.
Movements of deer can affect population dynamics, spatial redistribution, and transmission and spread of diseases. Our goal was to model the movement of deer in Nebraska in an attempt to predict the potential for spread of chronic wasting disease (CWD) into eastern Nebraska. We collared and radio-tracked >600 white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) in Nebraska during 1990–2006. We observed large displacements (>10 km) for both species and sexes of deer, including migrations up to 100 km and dispersals up to 50 km. Average distance traveled between successive daily locations was 166 m for male and 173 for female deer in eastern Nebraska, and 427 m for male and 459 for female deer in western Nebraska. Average daily displacement from initial capture point was 10 m for male and 14 m for female deer in eastern Nebraska, and 27 m for male and 28 m for female deer in western Nebraska. We used these data on naturally occurring movements to create and test 6 individual-based models of movement for white-tailed deer and mule deer in Nebraska, including models that incorporated sampling from empirical distributions of movement lengths and turn angles (DIST), correlated random walks (CRW), home point fidelity (FOCUS), shifting home point (SHIFT), probabilistic movement acceptance (MOVE), and probabilistic movement with emigration (MOVEwEMI). We created models in sequence in an attempt to account for the shortcomings of the previous model(s). We used the Kolmogrov–Smirnov goodness-of-fit test to verify improvement of simulated annual displacement distributions to empirical displacement distributions. The best-fit model (D = 0.07 and 0.08 for eastern and western Nebraska, respectively) included a probabilistic movement chance with emigration (MOVEwEMI) and resulted in an optimal daily movement length of 350 m (maximum daily movement length of 2800 m for emigrators) for eastern Nebraska and 370 m (maximum of 2960 m) for western Nebraska. The proportion of deer that moved as emigrators was 0.10 and 0.13 for eastern and western Nebraska, respectively. We propose that the observed spread of CWD may be driven by large movements of a small proportion of deer that help to establish a low prevalence of the disease in areas east of the current endemic area. Our movement models will be used in a larger individual-based simulation of movement, survival, and transmission of CWD to help determine future surveillance and management actions.  相似文献   

7.
Anecdotal evidence suggests that socioeconomic shocks strongly affect wildlife populations, but quantitative evidence is sparse. The collapse of socialism in Russia in 1991 caused a major socioeconomic shock, including a sharp increase in poverty. We analyzed population trends of 8 large mammals in Russia from 1981 to 2010 (i.e., before and after the collapse). We hypothesized that the collapse would first cause population declines, primarily due to overexploitation, and then population increases due to adaptation of wildlife to new environments following the collapse. The long‐term Database of the Russian Federal Agency of Game Mammal Monitoring, consisting of up to 50,000 transects that are monitored annually, provided an exceptional data set for investigating these population trends. Three species showed strong declines in population growth rates in the decade following the collapse, while grey wolf (Canis lupus) increased by more than 150%. After 2000 some trends reversed. For example, roe deer (Capreolus spp.) abundance in 2010 was the highest of any period in our study. Likely reasons for the population declines in the 1990s include poaching and the erosion of wildlife protection enforcement. The rapid increase of the grey wolf populations is likely due to the cessation of governmental population control. In general, the widespread declines in wildlife populations after the collapse of the Soviet Union highlight the magnitude of the effects that socioeconomic shocks can have on wildlife populations and the possible need for special conservation efforts during such times. Declinación Rápida de las Poblaciones de Mamíferos Mayores después del Colapso de la Unión Soviética  相似文献   

8.
The accumulation of new deleterious mutations has been predicted to constitute a significant threat to the survival of finite sexually reproducing populations. Three measures of genetic load were made on populations of Drosophila melanogaster maintained at effective population sizes of 25, 50, 100, 250, and 500 for 45 or 50 generations and their outbred base population and a new sample from the same wild population. Genetic loads were measured as fitness differentials between inbred and non-inbred lines derived from each population under both benign ( productivity of single pairs) and competitive (competitive index) conditions. No trend of smaller populations exhibiting greater genetic loads than larger ones was observed under either benign or competitive conditions. Further, genetic loads were similar in captive and wild populations. Frequencies of deleterious and lethal alleles on chromosome II were measured by making the chromosome (approximately 40% of the genome) homozygous using a marked balancer stock. Neither deleterious nor lethal allele frequencies exhibited a relationship with population size. The accumulation of detrimental mutations does not appear to pose a significant threat to finite sexual populations with effective sizes of 25 or more over the 100–200 year time frames considered in most wildlife conservation programs.  相似文献   

9.
Pathogen-driven declines in animal populations are increasingly regarded as a major conservation issue. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by devil facial tumor disease, a unique transmissible cancer. The disease is transmitted through direct transfer of tumor cells, which is possible because the genetic diversity of Tasmanian devils is low, particularly in the major histocompatibility complex genes of the immune system. The far northwest of Tasmania now holds the last remaining disease-free wild devil populations. The recent discovery of unique major histocompatibility complex genotypes in the northwestern region of Tasmania has raised the possibility that some animals may be resilient to the disease. We examined the differences in the epidemiology and population effects of devil facial tumor disease at 3 well-studied affected sites in eastern Tasmania and 1 in western Tasmania (West Pencil Pine). In contrast to the 3 eastern sites, there has been no rapid increase in disease prevalence or evidence of population decline at West Pencil Pine. Moreover, this is the only onsite at which the population age structure has remained unaltered 4 years after the first detection of disease. The most plausible explanations for the substantial differences in population effects and epidemiology of the disease between eastern and western sites are geographic differences in genotypes or phenotypes of devils and functional differences between tumor strains in the 2 regions. We suggest that conservation efforts focus on identifying whether either or both these explanations are correct and then, if resistance alleles exist, to attempt to spread the resistant alleles into affected populations. Such assisted selection has rarely been attempted for the management of wildlife diseases, but it may be widely applicable.  相似文献   

10.
Wildlife Loss through Domestication: the Case of Endangered Key Deer   总被引:1,自引:0,他引:1  
Abstract:  Wildlife extinction represents the ultimate failure of wildlife conservation. It has many causes, some of them natural, but is increasingly tied to anthropogenic factors. Wildlife loss via domestication, however, is rarely considered. We evaluated the potential for inadvertent domestication of wildlife by determining the effect of feeding and watering on Key deer ( Odocoileus virginianus clavium ) density, group size, and distribution. Key deer sightings were significantly higher in areas (42 ha) surrounding the households that provided food and water (0.18 deer/m;  n = 8   ) than in randomly selected areas (0.03 deer/m;  t = 3.82, 14  df, p = 0.002   ). Average distance to a household providing food and water decreased logistically as group size increased, and large groups (>2 individuals each) were observed more frequently in areas where food and water were provided (27.5%) than in the randomly selected areas (7.5%). The incidence of large groups outside feeding areas (7.5%), however, was similar to the incidence of large groups during early urbanization (5.1%; 1968–1973). Our results suggest illegal feeding caused changes in density, group size, and distribution indicative of domestication. Because fresh water and food were primary selective pressures for Key deer before illegal feeding and watering, genetic changes may occur in the future. For those who value "wildness" in wildlife, domestication of wildlife species is a serious problem that must be addressed.  相似文献   

11.
Summary Population density affects the dynamics of mate acquisition and the opportunity for sexual selection in natural populations of the seed bug, Neacoryphus bicrucis Say (Hemiptera : Lygaeidae). The opportunity for sexual selection and the intensity of directional sexual selection on body length increased as the population density declined within a season for a population in a small, disjunct patch of host plant, Senecio anonymus. In a larger, dispersed population, both measures of selection were greater in host plant patches of low rather than high adult density when the population was sampled at peak density. Under conditions of higher density, males were more likely to share plants, larger males were less likely to monopolize patches of host plant to which females were attracted for mating, and smaller males were more likely to mate in the presence of large males. Thus, resource defense polygyny collapsed under high density, obviating the advantage of size in territory control, and resulted in scramble competition among males for mates. The population exhibited significant additive genetic variation for body length. This suggests that natural selection acting on other components of fitness favors smaller size or that the direction of sexual selection on size fluctuates between generations in response to the between-year variation in population density. Thus, strong sexual selection appears to impose a significant genetic load.  相似文献   

12.
Abstract: Sustainable strategies to manage infectious diseases in threatened wildlife are still lacking despite considerable concern over the global increase in emerging infectious diseases of wildlife and their potential to drive populations to extinction. Selective culling of infected individuals will often be the most feasible option to control infectious disease in a threatened wildlife host, but has seldom been implemented or evaluated as a management tool for the conservation of threatened species. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by an infectious cancer, devil facial tumor disease (DFTD). We assess the success of an adaptive management trial involving selective culling of infected Tasmanian devils to control DFTD. Demographic and epidemiological parameters indicative of disease progression and impact were compared between the management site and a comparable unmanaged control site. Selective culling of infected individuals neither slowed rate of disease progression nor reduced population‐level impacts of this debilitating disease. Culling mortality simply compensated for disease mortality in this system. Failure of selective culling to impede DFTD progress and reduce its impacts in the managed population was attributed to DFTD's frequency‐dependent nature, its long latent period and high degree of infectivity, and the presence of a cryptic hidden disease reservoir or continual immigration of diseased individuals. We suggest that increasing the current removal rate and focusing removal efforts prior to the breeding season are options worth pursuing for future management of DFTD in this population. On the basis of our experience, we suggest that disease‐management programs for threatened wildlife populations be developed on the principles of adaptive management and utilize a wide variety of strategies with regular reviews and adaptation of strategies undertaken as new information is obtained.  相似文献   

13.
Forests Too Deer: Edge Effects in Northern Wisconsin   总被引:12,自引:0,他引:12  
Abstract: Browsing by white-tailed deer (Odocoileus virginianus) can profoundly affect the abundance and population structure of several woody and herbaceous plant species. Enclosure studies and population surveys reveal that past and current deer densities as low as 4 deer/km2 may prevent regeneration of the once common woody species, Canada yew (Taxus canadensis), eastern hemlock (Tsuja canadensis), and white cedar Puja occidentalis), as well as several herbaceous species. Prior to European settlement, forests in northern Wisconsin contained relatively sparse deer populations (<4/km2), but extensive timber cutting in the late nineteenth century boosted deer populations. Continued habitat fragmentation resulting from scattered timber harvests and the creation of "wildlife openings" to improve deer forage maintain these high densities throughout much of the Northeast.
Because deer wander widely, the effects of high deer densities penetrate deeply into remaining stands of old and mature forest, greatly modifying their composition Thus, abundant early successional and "edge" habitat, and the high deer densities they engender, represent significant external threats to these plant communities. We hypothesize that establishing large (200–400 km2) continuous areas of maturing forest, especially in conjunction with increased hunting, could reduce local deer densities and so provide a simple and inexpensive method for retaining species sensitive to the deleterious effects of browsing.  相似文献   

14.
With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population-level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate-related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change.  相似文献   

15.
数量(密度)特征是动物种群的一个重要特征,是定点研究一个野生种群生态的一项非常重要的基础工作.其数量和年龄结构为进一步分析其种群的密度、移动、巢域和核域,尤其是为种群动态提供依据,也是珍稀动物保护和资源动物管理利用的先行工作和重要组成部份.关于野生动物种群数量的具体统计方法,有不少的文章报道,然而从动物的空间分布格局来研究大型脊椎动物却较为少见,这主要是受研究方法的限制.为此,作者对此进行了改进,提出了一种新的研究方法:临时空间样方法,并将其应用到冶勒自然保护区林麝的数量调查研究中去.结果表明:(1)集聚分布指数CA=12.09,说明冶勒自然保护区的林麝有较高的集聚度;(2)林麝粪堆在野外的分布属于聚集分布,并与负二项分布拟合较好;(3)在冶勒自然保护区,生活有62~98只左右的林麝,其密度为:1.0~1.6只/km^2.林麝在冶勒自然保护区呈现聚积分布的原因是由于环境和人类活动因素造成的.图1表2参24  相似文献   

16.
Artificial propagation strategies often incur selection in captivity that leads to traits that are maladaptive in the wild. For propagation programs focused on production rather than demographic contribution to wild populations, effects on wild populations can occur through unintentional escapement or the need to release individuals into natural environments for part of their life cycle. In this case, 2 alternative management strategies might reduce unintended fitness consequences on natural populations: (1) reduce selection in captivity as much as possible to reduce fitness load (keep them similar), or (2) breed a separate population to reduce captive‐wild interactions as much as possible (make them different). We quantitatively evaluate these 2 strategies with a coupled demographic–genetic model based on Pacific salmon hatcheries that incorporates a variety of relevant processes and dynamics: selection in the hatchery relative to the wild, assortative mating based on the trait under selection, and different life cycle arrangements in terms of hatchery release, density dependence, natural selection, and reproduction. Model results indicate that, if natural selection only occurs between reproduction and captive release, the similar strategy performs better. However, if natural selection occurs between captive release and reproduction, the different and similar strategies present viable alternatives to reducing unintended fitness consequences because of the greater opportunity to purge maladaptive individuals. In this case, the appropriate approach depends on the feasibility of each strategy and the demographic goal (e.g., increasing natural abundance, or ensuring that a high proportion of natural spawners are naturally produced). In addition, the fitness effects of hatchery release are much greater if hatchery release occurs before (vs. after) density‐dependent interactions. Given the logistical challenges to achieving both the similar and different strategies, evaluation of not just the preferred strategy but also the consequences of failing to achieve the desired target is critical. Evaluación de Estrategias Alternativas para Minimizar las Consecuencias No Inesperadas en la Adecuación de Individuos Criados en Cautiverio sobre Poblaciones Silvestres  相似文献   

17.
Population History, Genetic Variability, and Horn Growth in Bighorn Sheep   总被引:2,自引:0,他引:2  
Bighorn sheep ( Ovis canadensis ) are restricted in distribution and numbers relative to presettlement conditions. Some populations have alledgedly suffered losses of fitness resulting from small, insular populations and a breeding system that reduces effective population size. Large horns in rams, which confer breeding superiority, are absent from some populations, and this absence may result in part from loss of genetic variability. We investigated the relationship among allozyme variability, population history, and horn growth in bighorn sheep from the Rocky Mountains. Heterozygosity was higher for bighorn sheep than has been reported for Dall sheep ( O. dalli ). Heterozygosity and allelic variability were marginally related to effective population size for the proceeding 15 years. Horn growth was significantly higher in more heterozygous than in less heterozygous rams for years 6, 7, and 8 of life. By the end of year 8, more heterozygous rams had 13% higher horn volumes than less heterozygous rams. Most hunting of bighorn sheep involves selective removal of large-horned rams, which we hypothesize may reduce genetic variability of these populations and contribute to losses in fitness.  相似文献   

18.
Human land use is fragmenting habitats worldwide and inhibiting dispersal among previously connected populations of organisms, often leading to inbreeding depression and reduced evolutionary potential in the face of rapid environmental change. To combat this augmentation of isolated populations with immigrants is sometimes used to facilitate demographic and genetic rescue. Augmentation with immigrants that are genetically and adaptively similar to the target population effectively increases population fitness, but if immigrants are very genetically or adaptively divergent, augmentation can lead to outbreeding depression. Despite well‐cited guidelines for the best practice selection of immigrant sources, often only highly divergent populations remain, and experimental tests of these riskier augmentation scenarios are essentially nonexistent. We conducted a mesocosm experiment with Trinidadian guppies (Poecilia reticulata) to test the multigenerational demographic and genetic effects of augmenting 2 target populations with 3 types of divergent immigrants. We found no evidence of demographic rescue, but we did observe genetic rescue in one population. Divergent immigrant treatments tended to maintain greater genetic diversity, abundance, and hybrid fitness than controls that received immigrants from the source used to seed the mesocosms. In the second population, divergent immigrants had a slightly negative effect in one treatment, and the benefits of augmentation were less apparent overall, likely because this population started with higher genetic diversity and a lower reproductive rate that limited genetic admixture. Our results add to a growing consensus that gene flow can increase population fitness even when immigrants are more highly divergent and may help reduce uncertainty about the use of augmentation in conservation.  相似文献   

19.
Models of parasite-mediated sexual selection have thus far overlooked the potential effects of parasites of females on their hosts’ ability to choose mates. A set of models addressing this issue is developed, each building on the previous one to add complexity and realism to the framework. The selection coefficient for parasite immunity and brightness is estimated using the ratio of the fitness of susceptible males to the fitness of immune males. Parasite-induced reduction in female choosiness can substantially relax the selection for bright, immune males, especially when: (1) immunity to parasites is rare in the population, (2) parasites are not highly aggregated within the host population, (3) parasites are abundant, and (4) the effects of parasites on male brightness or female choosiness are severe. Parasite-induced variability in male brightness is most likely to occur in populations in which parasites are abundant and not aggregated; if females in those populations show a reduced preference for bright males, sexual selection for brightness (and parasite immunity) will still operate but exert a weaker selective pressure. Received: 4 November 1994/Accepted after revision: 9 September 1995  相似文献   

20.
We summarize direct and indirect effects on fitness components of animal color pattern and present a synthesis of theories concerning the ecological and evolutionary dynamics of chromatic multiple niche polymorphisms. Previous endeavors have aimed primarily at identifying conditions that promote the evolution and maintenance of polymorphisms. We consider in a conceptual model also the reciprocal influence of color polymorphism on population processes and propose that polymorphism entails selective advantages that may promote the ecological success of polymorphic species. The model begins with an evolutionary branching event from mono- to polymorphic condition that, under the influence of correlational selection, is predicted to promote the evolution of physical integration of coloration and other traits (cf. multi-trait coevolution and complex phenotypes). We propose that the coexistence within a population of alternative ecomorphs with coadapted gene complexes promotes utilization of diverse environmental resources, population stability and persistence, colonization success, and range expansions, and enhances the evolutionary potential and speciation. Conversely, we predict polymorphic populations to be less vulnerable to environmental change and at lower risk of range contractions and extinctions compared with monomorphic populations. We offer brief suggestions as to how these falsifiable predictions may be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号